# Microbundles are Fibre Bundles 

Author(s): J. M. Kister
Source: Annals of Mathematics, Tul., 1964, Second Series, Vol. 80, No. 1 (Jul., 1964), pp. 190-199

Published by: Mathematics Department, Princeton University
Stable URL: https://www.jstor.org/stable/1970498

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

# Microbundles are Fibre Bundles* 

By J. M. KISTER

Let $\mathcal{G}(n)$ be the space of all imbeddings of euclidean $n$-space $E^{n}$ into itself provided with the compact-open topology. Let $\mathscr{F}(n)$ be the subspace of all onto homeomorphisms. Those elements in $\mathscr{F}(n)$ and $\mathscr{F}(n)$ which preserve the origin 0 will be denoted by $\mathscr{G}_{0}(n)$ and $\mathscr{H}_{0}(n)$ respectively. Briefly, the main result (Theorem 2) ${ }^{1}$ of this paper is that every microbundle over a complex contains a fibre bundle (in the sense of [5], where fibre $=E^{n}$, group $=\mathscr{F}_{0}(n)$ ), and the fibre bundle is unique. This implies that every such microbundle is mb-isomorphic to a fibre bundle, and any two such fibre bundles are fb-isomorphic. The same result extends to microbundles over neighborhood retracts in $E^{n}$. In the special case of a topological manifold $M$ and its tangent microbundle, a neighborhood $U_{x}$ is selected for each point $x$ in $M$ so that $U_{x}$ is an open cell and varies continuously with $x$.

The proof of Theorem 2 depends on extending homeomorphisms, and requires an examination of the non-closed subset $\mathscr{F}_{0}(n)$ in $\mathscr{G}_{0}(n)$. We show that $\mathscr{F}_{0}(n)$ is a weak kind of deformation retract of $\mathscr{G}_{0}(n)$. More precisely:

Theorem 1. There is a map $F: \mathscr{G}_{0}(n) \times I \rightarrow \mathcal{G}_{0}(n)$, for each $n$, such that
(1) $F(g, 0)=g$ for all $g$ in $\Theta_{0}(n)$
(2) $F(g, 1)$ is in $\mathscr{F}_{0}(n)$ for all $g$ in $\mathscr{\Theta}_{0}(n)$.
( 3 ) $F(h, t)$ is in $\mathscr{F}_{0}(n)$ for all $h$ in $\mathscr{F}_{0}(n), t$ in $I$.
For definitions and basic results about microboundles cf. [4]. In [2] an introduction and outline of this paper will be found.

The author wishes to express his gratitude to D.R. McMillan for several helpful conversations.

## Definitions

The disk of radius $r$ with center at 0 in $E^{n}$ is denoted by $D_{r}$ and, if $K$ is a compact set in $E^{n}$ containing 0 , we define the radius of $K$ to be $\max \left\{r \mid D_{r} \subset K\right\}$. Let $d$ be the usual metric in $E^{n}$. If $g_{1}, g_{2}: K \rightarrow E^{n}$ are imbeddings of the compact set $K$, then we say $g_{1}$ and $g_{2}$ are within $\varepsilon$ if for each $x$ in $K$ it is true that $d\left(g_{1}(x), g_{2}(x)\right)<\varepsilon$. If $g$ is in $\mathcal{G}_{0}(n)$ and $K$ is a compact set in $E^{n}, V(g, K, \varepsilon)$ denotes all elements $h$ in $\mathscr{G}_{0}(n)$ such that $g \mid K$ and $h \mid K$ are within $\varepsilon$. The collection of all such $V(g, K, \varepsilon)$ is, of course, a basis for $\mathscr{G}_{0}(n)$.

Two compact sets in $E^{n}, K_{1}$ and $K_{2}$, are $\varepsilon$-homeomorphic if there is a

[^0]homeomorphism $h: K_{1} \rightarrow K_{2}$ within $\varepsilon$ of the identity $1: K_{1} \rightarrow K_{1}$.
If $0 \leqq a<b<d$ and $a<c<d$ and $t$ is in $I$, then we define $\theta_{t}(a, b, c, d)$ to be the homeomorpism of $E^{n}$ onto itself, fixed on $D_{a}$ and outside $D_{d}$ as follows. Let $L$ be a ray emanating from the origin and coordinatized by distance from the origin. Then $\theta_{t}$ is fixed on $[0, a]$ and on $[d, \infty)$, and it takes $b$ onto $(1-t) b+t c$ and is linear on $[a, b]$ and $[b, d]$. We denote $\theta_{1}(a, b, c, d)$ by $\theta(a, b, c, d)$, and $\theta(0, b, c, d)$ by $\theta(b, c, d)$. Clearly $(t, a, b, c, d) \rightarrow \theta_{t}(a, b, c, d)$ is continuous, regarded as a function from a subset of $E^{5}$ into $\mathscr{F}_{0}(n)$.

When the dimension is unambigous $\mathscr{G}, \mathscr{F}_{0}$ etc. will be used for $\mathscr{G}(n), \mathscr{K}_{0}(n)$ etc.

## A useful lemma

Lemma. Let $g$ and $h$ be in $\mathcal{G}_{0}(n)$ with $h\left(E^{n}\right) \subset g\left(E^{n}\right)$. Let $a, b, c$ and $d$ be real numbers satisfying $0 \leqq a<b, 0<c<d$, and such that $h\left(D_{b}\right) \subset g\left(D_{c}\right)$. Then there is an isotopy $\varphi_{t}(g, h ; a, b, c, d)=\varphi_{t}(t \in I)$ of $E^{n}$ onto itself satisfying
(1) $\varphi_{0}=1$;
(2) $\varphi_{1}\left(h\left(D_{b}\right)\right) \supset g\left(D_{c}\right)$;
(3) $\varphi_{t}$ is fixed outside $g\left(D_{d}\right)$ and on $h\left(D_{a}\right)$.

Furthermore $(g, h, a, b, c, d, t) \rightarrow \varphi_{t}$ is a continuous function from the appropriate subset of $\mathscr{G}_{0} \times \mathcal{G}_{0} \times E^{5}$ into $\mathscr{H}_{0}$.

Proof. Let $a^{\prime}$ be the radius of $g^{-1} h\left(D_{a}\right)$; note that $a^{\prime}<c$. Let $b^{\prime}$ be the radius of $g^{-1} h\left(D_{b}\right)$; note that $a^{\prime}<b^{\prime} \leqq c<d$.

We first shrink $h\left(D_{a}\right)$ inside $g\left(D_{a^{\prime}}\right)$ with a homeomorphism $\sigma$ fixed outside $h\left(D_{b}\right)$. This can be done as follows. Let $a^{\prime \prime}$ be the radius of $h^{-1} g\left(D_{a^{\prime}}\right)$; note that $a^{\prime \prime} \leqq a<b$. Define

$$
\sigma=\left\{\begin{array}{l}
h \theta\left(a, a^{\prime \prime}, b\right) h^{-1}  \tag{b}\\
1
\end{array}\right.
$$ elsewhere .

Next we get an isotopy $\psi_{t}(t \in I)$ taking $g\left(D_{b^{\prime}}\right)$ onto $g\left(D_{c}\right)$, leaving $g\left(D_{a^{\prime}}\right)$, and the exterior of $g\left(D_{d}\right)$ fixed. Define

$$
\psi_{t}=\left\{\begin{array}{l}
g \theta_{t}\left(a^{\prime}, b^{\prime}, c, d\right) g^{-1} \\
1
\end{array}\right.
$$

Finally define $\varphi_{t}=\sigma^{-1} \psi_{t} \sigma$. It is easy to verify that (1), (2) and (3) are satisfied. The continuity of $\varphi_{t}$ depends on the following three propositions.

Proposition 1. Let $g$ be in $\mathcal{G}_{0}$, and let $r$ and $\varepsilon$ be two positive numbers. Then there is a $\delta>0$ so that, if $g_{1}$ is in $V\left(g, D_{r+\varepsilon}, \delta\right)$, then
(1) $g_{1}\left(D_{r+\varepsilon}\right) \supset g\left(D_{r}\right)$;
(2) $g_{1}^{-1} \mid g\left(D_{r}\right)$ and $g^{-1} \mid g\left(D_{r}\right)$ are within $\varepsilon$.

Proof. Let

$$
\delta_{1}=\min \left\{d(g(x), g(y)) \mid x \in D_{r}, y \notin \operatorname{int} D_{r+\varepsilon}\right\}
$$

and

$$
\delta_{2}=\min \left\{d(g(x), g(y)) \mid x, y \in D_{r}, d(x, y) \geqq \varepsilon\right\}
$$

Let

$$
\delta=\min \left\{\delta_{1}, \delta_{2}\right\}
$$

Suppose $g_{1}$ is in $V\left(g, D_{r+\varepsilon}, \delta\right)$. Then condition (1) is satisfied, for otherwise there is a $z$ in $\operatorname{Bd} g_{1}\left(D_{r+\varepsilon}\right) \cap g\left(D_{r}\right)$. Let $x=g^{-1}(z) \in D_{r}$, and $y=g_{1}^{-1}(z) \in \operatorname{Bd} D_{r+\varepsilon}$. Then $\delta_{1} \leqq d(g(x), g(y))=d\left(g_{1}(y), g(y)\right)$, contradicting the choice of $g_{1}$.

To see that condition (2) is satisfied, suppose not. Then there is a $z$ in $g\left(D_{r}\right)$ such that, if $x=g^{-1}(z)$ and $y=g_{1}^{-1}(z)$, then $d(x, y) \geqq \varepsilon$ and $x$ and $y$ are in $D_{r+\varepsilon}$. It follows that $\delta_{2} \leqq d(g(x), g(y))=d\left(g_{1}(y), g(y)\right)$, contradicting the choice of $g_{1}$.

Proposition 2. Let $C$ be a compact set, $h: C \rightarrow E^{n}$ an imbedding, $D$ a compact set in $E^{n}$ containing $h(C)$ in its interior, and $g: D \rightarrow E^{n}$ another imbedding. For any $\varepsilon>0$, there is a $\delta$ so that, if $g_{1}: D \rightarrow E^{n}, h_{1}: C \rightarrow E^{n}$ are imbeddings within $\delta$ of $g$ and $h$ respectively, then $g_{1} h_{1}$ is defined and within $\varepsilon$ of $g h$.

Proof. Since $D$ contains $h(C)$ on its interior and $h(C)$ is compact, there is a $\delta_{1}>0$ such that the $\delta_{1}-\mathrm{nbd}$ of $h(C)$ is contained in $D$. Let $\delta_{2}$ be so small that $x, y \in D$ and $d(x, y)<\delta_{2}$ imply $d(g(x), g(y))<\varepsilon / 2$. Choose $\delta=\min \left(\delta_{1}, \delta_{2}, \varepsilon / 2\right)$. Then if $g_{1}: D \rightarrow E^{n}$ and $h_{1}: C \rightarrow E^{n}$ are imbeddings within $\delta$ of $g$ and $h$ respectively, $g_{1} h_{1}$ is defined, since $\delta \leqq \delta_{1}$. Let $z \in C$ and $x=h(z), y=h_{1}(z)$. It follows that $d(x, y)<\delta \leqq \delta_{2}$, hence $d(g(x), g(y))<\varepsilon / 2$. Also $d\left(g(y), g_{1}(y)\right)<\delta \leqq$ $\varepsilon / 2$, hence $d\left(g h(z), g_{1} h_{1}(z)\right)=d\left(g(x), g_{1}(y)\right)<\varepsilon$.

Remark. Proposition 2 shows that the semi-group $\mathcal{G}\left(\right.$ or $\left.\mathscr{G}_{0}\right)$ whose multiplication consists of composition, is a topological semi-group, i.e., multiplication is continuous.

Proposition 3. Let $g$ and $h$ be in $\mathcal{G}_{0}$, and let a be a non-negative number such that $h\left(D_{a}\right) \subset g\left(E^{n}\right)$. Let $r=$ radius $g^{-1} h\left(D_{a}\right)$. Then $r=r(g, h, a)$ is continuous simultaneously in the variables $g, h$ and $a$.

Proof. Case 1. $a>0$. Let $T_{a_{1}}: E^{n} \rightarrow E^{n}$ be defined by $T_{a_{1}}(x)=\left(a_{1} / a\right) x$, for positive $a_{1}$. Clearly $T_{a_{1}}$ varies continuously with $a_{1}$, hence Proposition 2 shows that, given any nbd $N$ of $h$, there is a nbd $M$ of $h$ and a nbd $P$ of $a$ such that ( $h_{1}, a_{1}$ ) in $M \times P$ implies that $h_{1} T_{a_{1}}$ is in the nbd $N$ of $h 1=h$. Using Propositions 1 and 2 , we can conclude that, for any $\varepsilon$, there is a nbd $L_{1}$ of $g, M_{1}$ of $h$, and $P_{1}$ of $a$ such that $\left(g_{1}, h_{1}, a_{1}\right)$ in $L_{1} \times M_{1} \times P_{1}$ implies $g_{1}^{-1} h_{1} T_{a_{1}} \mid D_{a}$ is
defined and is within $\varepsilon$ of $g^{-1} h \mid D_{a}$. This means $g^{-1} h\left(D_{a}\right)$ and $g_{1}^{-1} h_{1}\left(D_{a_{1}}\right)$ are $\varepsilon-$ homeomorphic, and it can easily be seen that $\left|r(g, h, a)-r\left(g_{1}, h_{1}, a_{1}\right)\right|<\varepsilon$.

Case 2. $a=0$. Then $r(g, h, a)=0$ and, for any $\varepsilon$, there is a $\delta$ such that diameter $g^{-1} h\left(D_{\mathrm{s}}\right)<\varepsilon$. As in Case 1, using Propositions 1 and 2, we can conclude that $g_{1}^{-1} h_{1} \mid D_{\mathrm{\delta}}$ varies continuously with $g_{1}$ and $h_{1}$; hence by restricting $g_{1}$ and $h_{1}$ to lie near $g$ and $h$ respectively, and for $a_{1} \in[0, \delta]$, we have $r\left(g_{1}, h_{1}, a_{1}\right)<2 \varepsilon$. This finishes the proof of Proposition 3.

Going back to the proof of the Lemma we first show $\sigma=\sigma(g, h, a, b)$ is continuous. By applying Proposition 3 twice we see that $a^{\prime \prime}$ depends continuously on $g$, $h$, and $a$, hence $\theta\left(a, a^{\prime \prime}, b\right)$ depends continuously on $g, h, a$ and $b$. Note that $\sigma$ would be the same function if it were defined as $h \theta\left(a, a^{\prime \prime}, b\right) h^{-1}$ on the set $h\left(D_{b+2}\right)$ and 1 elsewhere. Since $h\left(D_{b+1}\right) \subset \operatorname{int} h\left(D_{b+2}\right)$, there is a neighborhood $N$ of $h$ such that $h_{1}$ in $N$ implies $h_{1}\left(D_{b+1}\right) \subset h\left(D_{b+2}\right)$, hence if $h_{1}$ is in $N, b_{1}$ is in the interval $(0, b+1)$, and $g_{1}$ and $a_{1}$ satisfy the hypotheses of the Lemma, then $\sigma_{1}=\sigma\left(g_{1}, h_{1}, a_{1}, b_{1}\right)$ can be defined as $h_{1} \theta\left(a_{1}, a_{1}^{\prime \prime}, b_{1}\right) h_{1}^{-1}$ on $h\left(D_{b+2}\right)$ and 1 everywhere else, where $a_{1}^{\prime \prime}=a^{\prime \prime}\left(a_{1}\right)$.

We may assume, using Proposition 1, that $N$ has been chosen so that $h_{1}\left(D_{b+3}\right) \supset h\left(D_{b+2}\right)$ for $h_{1}$ in $N$, hence $h_{1}^{-1} \mid h\left(D_{b+2}\right)$ is defined. Proposition 1 also shows that $h_{1}^{-1} \mid h\left(D_{b+2}\right)$ varies continuously with $h_{1}$. Using Proposition 2, we conclude that $\theta\left(a_{1}, a_{1}^{\prime \prime}, b_{1}\right) h_{1}^{-1} \mid h\left(D_{b+2}\right)$ varies continuously with $g_{1}, h_{1}, a_{1}$ and $b_{1}$. Finally applying Proposition 2 again we see that $\sigma_{1} \mid h\left(D_{b+2}\right)=$ $h_{1} \theta\left(a_{1}, a_{1}^{\prime \prime}, b_{1}\right) h_{1}^{-1} \mid h\left(D_{b+2}\right)$ varies continuously with $g_{1}, h_{1}, a_{1}$ and $b_{1}$, and hence $\sigma(g, h, a, b)$ is continuous.

The proof that $\psi_{t}=\psi(g, h, a, b, c, d, t)$ is continuous is virtually the same as that for $\sigma$. From Propositions 1 and 2 , it is easy to see that $\mathscr{H}$ is a topological group, hence the product $\varphi_{t}$ is continuous in $\sigma$ and $\psi_{t}$, and therefore $\varphi_{t}$ depends continuously on $g, h, a, b, c, d$ and $t$. q.e.d.

## Proof of Theorem 1

Before we give the proof of Theorem 1 we state and prove two more propositions.

Proposition 4. Let $g$ be in $\Theta_{0}$, and $r_{i}$ be the radius of $g\left(D_{i}\right)$ for each positive integer $i$. Then there is an element $h$ in $\mathscr{B}_{0}$ such that $h\left(D_{i}\right)=D_{r_{i}}$, for each $i$, and $h$ depends continuously on $g$.

Proof. Let $L$ be any ray emanating from the origin in $E^{n}$. Coordinatize $L$ by the distance from 0 . We shall define $h$ on $L$ so that

$$
h(L)=L \cap\left(\bigcup_{i=1}^{\infty} D_{r_{i}}\right) .
$$

The segment $[0,1]$ on $L$ is mapped linearly onto $\left[0, r_{1}\right]$. More generally, $[i, i+1]$
is mapped linearly by $h$ onto $\left[r_{i}, r_{i+1}\right], i=1,2, \cdots$. It is easily seen that $h$ is in $\Theta_{0}$.

To see that $h$ is continuous as a function of $g$, we merely have to note that $h$ depends only on the $r_{i}$, and that each $r_{i}$ depends continuously on $g$ according to Proposition 3.

Proposition 5. Let $F: \Theta_{0} \times[0,1) \rightarrow \Theta_{0}$ be continuous, and denote $F(g, t)$ by $g_{t}$. Suppose $g_{t}\left|D_{n}=g_{1-(1 / 2)^{n}}\right| D_{n}$ for all $t$ in $\left[1-(1 / 2)^{n}, 1\right)$, and $n=1,2, \cdots$. Then $F$ can be extended to $\mathscr{S}_{0} \times I$.

Proof. Define $F(g, 1)$ to be $\lim _{t \rightarrow 1} g_{t}=g_{1}$. Clearly $g_{1}$ is well-defined, continuous, and 1-1, and by invariance of domain, $g_{1}$ is open, hence $g_{1}$ is in $\mathscr{S}_{0}$.

We verify continuity of $F$ at $(g, 1)$. Let $K$ be any compact set in $E^{n}$, $\varepsilon>0$, and let $V\left(g_{1}, K, \varepsilon\right)$ be the neighborhood they determine in $\Theta_{0}$. Let $n$ be large enough that $K$ is contained in $D_{n}$. Then $g_{1-(1 / 2)^{n}}$ is in $V\left(g_{1}, K, \varepsilon\right)$, so by continuity of $F$ at $\left(g, 1-(1 / 2)^{n}\right)$, there is a neighborhood $N$ of $g$ such that

$$
F\left(N \times 1-\left(\frac{1}{2}\right)^{n}\right) \subset V\left(g_{1}, K, \varepsilon\right) .
$$

It follows that

$$
F\left(N \times\left[1-\left(\frac{1}{2}\right)^{n}, 1\right]\right) \subset V\left(g_{1}, K, \varepsilon\right)
$$

since $g_{t}^{\prime}\left|D_{n}=g_{1-(1 / 2)^{n}}^{\prime}\right| D_{n}$ for $g^{\prime}$ in $N, t$ in $\left[1-(1 / 2)^{n}, 1\right]$.
We return to the proof of Theorem 1. Let $g$ in $\mathcal{S}_{0}$ be given. Use Proposition 4 to find $h=h(g)$. First we shall produce an isotopy $\alpha_{t}(t \in I): E^{n} \rightarrow g\left(E^{n}\right)$ such that
( a) $\alpha_{0}=h$;
( b) $\alpha_{1}\left(E^{n}\right)=g\left(E^{n}\right)$;
( c) $\alpha_{t}=\alpha(g, t)$ is continuous in $g$ and $t$.
We do this in an infinite number of steps. To define $\alpha_{t}(t \in[0,1 / 2])$ we use the Lemma for $a=0, b=c=1, d=2$, and obtain $\varphi_{t}(t \in I)$. Define $\alpha_{t}=$ $\varphi_{2 t} h(t \in[0,1 / 2])$. Then $\alpha_{0}=h, \alpha_{1 / 2}\left(D_{1}\right) \supset g\left(D_{1}\right)$ and, by Proposition 4, the Lemma, and the remark after Proposition 2, $\alpha_{t}(t \in[0,1 / 2])$ is continuous in $g$ and $t$. Note that $\alpha_{1 / 2}\left(D_{2}\right) \subset g\left(D_{2}\right)$ by property (3) of the Lemma.

Next we define, $\alpha_{t}(t \in[1 / 2,3 / 4])$ by again using the Lemma, this time for " $h$ " $=\alpha_{1 / 2}, a=1, b=c=2, d=3$, and we obtain $\varphi_{t}(t \in I)$. Now define $\alpha_{t}=$ $\varphi_{4 t-2} \alpha_{1 / 2}(t \in[1 / 2,3 / 4])$. Then $\alpha_{t}$ is an extension of that obtained in the first step, $\alpha_{3 / 4}\left(D_{2}\right) \supset g\left(D_{2}\right)$, and since $\alpha_{1 / 2}$ depends continuously on $g$, we can conclude as before that $\alpha_{t}(t \in[1 / 2,3 / 4])$ is continuous in $g$ and $t$. Note that $\alpha_{3 / 4}\left(D_{3}\right) \subset$ $g\left(D_{3}\right)$, and that $\alpha_{t}\left|D_{1}=\alpha_{1 / 2}\right| D_{1}$ for $t$ in $[1 / 2,3 / 4]$, by property (3) of the Lemma.

We continue in this manner defining for each integer $n, \alpha_{t}\left(t \in\left[1-(1 / 2)^{n}\right.\right.$,
$\left.\left.1-(1 / 2)^{n+1}\right]\right)$ such that $\alpha_{1-(1 / 2)^{n}( }\left(D_{n}\right) \supset g\left(D_{n}\right)$ and $\alpha_{t}\left|D_{n}=\alpha_{1-(1 / 2) n}\right| D_{n}$ for $t$ in $\left[1-(1 / 2)^{n}, 1-(1 / 2)^{n+1}\right]$.

Proposition 5 allows us to define $\alpha_{1}$ so that $\alpha_{t}(t \in I)$ depends continuously on $g$ and $t$, and $\alpha_{1}\left(E^{n}\right)=g\left(E^{n}\right)$.

In the second stage, we produce an isotopy $\beta_{t}(t \in I): E^{n} \rightarrow E^{n}$ such that
(a) $\beta_{0}=h$,
(b) $\beta_{1}=1$,
(c) $\beta_{t}=\beta(g, t)$ is continuous in $g$ and $t$.

This we do again in an infinite number of steps, first obtaining $\beta_{t}(t \in[0,1 / 2])$ as follows. We have $h\left(D_{1}\right)=D_{r_{1}}$ where $r_{1}=$ radius of $g\left(D_{1}\right)$, since $h$ was constructed so as to take round disks onto round disks. We shall preserve this property throughout the isotopy $\beta_{t}(t \in I)$. Let $L$ be any ray emanating from the origin in $E^{n}$ and coordinatized by distance from the origin. For $t$ in $I$, let $\varphi_{t}$ take the interval $\left[0, r_{1}\right]$ in $L$ linearly onto $\left[0,(1-t) r_{1}+t\right]$ and translate $\left[r_{1}, \infty\right)$ to $\left[(1-t) r_{1}+t, \infty\right)$. This defines $\varphi_{t}$ in $\mathscr{K}_{0}$ for each $t$ in $I$. Now let $\beta_{t}=\varphi_{2 t} h(t \in[0,1 / 2])$. Then $\beta_{0}=h$ and $\beta_{1 / 2} \mid D_{1}=1$, and since $r_{1}$ and $h$ depend continuously on $g$, then $\varphi_{2 t}$ and hence $\beta_{t}$ are continuous in $g$ and $t$.

Let $s_{2}$ be such that $\beta_{1 / 2}\left(D_{2}\right)=D_{s_{2}}$, and define $\beta_{t}(t \in[1 / 2,3 / 4])$ as follows. Let $L$ be any ray as before, and let $\phi_{t}(t \in I)$ take $\left[1, s_{2}\right]$ in $L$ linearly onto $\left[1,(1-t) s_{2}+2 t\right]$, translate $\left[s_{2}, \infty\right)$ onto $\left[(1-t) s_{2}+2 t, \infty\right)$, and leave $[0,1]$ fixed. Define $\beta_{t}=\varphi_{4 t-2} \beta_{1 / 2}(t \in[1 / 2,3 / 4])$. Then this extends $\beta_{t}(t \in[0, t])$, $\beta_{3 / 4} \mid D_{2}=1$, and $\beta_{t}$ depends continuously on $g$ and $t$.

Continuing in this manner, as in the first stage, we obtain an isotopy $\beta_{t}(t \in I)$ which depends continuously on $g$ and $t$.

Now define

$$
F(g, t)=\left\{\begin{array}{l}
\alpha_{1-2 t} \alpha_{1}^{-1} g \\
\beta_{2 t-1} \alpha_{1}^{-1} g
\end{array}\right.
$$

for $t$ in $[0,1 / 2]$
for $t$ in $[1 / 2,1]$.
It is easy to check that $F$ satisfies (1) and (2). An immediate consequence of Proposition 4 is that $h$ is onto if $g$ is. Each $\varphi_{t}$ that occurs in a step of the construction of $\alpha_{t}$ and $\beta_{t}$ is onto, hence $\alpha_{t}$ and $\beta_{t}$, and finally $F(g, t)$ is onto if $g$ is, so property (3) holds. Continuity of $F$ follows from that of $\alpha_{t}$ and $\beta_{t}$ and from Propositions 1 and 2.

## Admissible bundles

A microbundle $\mathbf{x}: B \xrightarrow{i} E \xrightarrow{j} B$, having fibre dimension $n$, admits a bundle providing there is an open set $E_{1}$ in $E$ containing the 0 -section $i(B)$ such that $j \mid E_{1}: E_{1} \rightarrow B$ is a fibre bundle with fibre $E^{n}$ and structural group $\mathscr{H}_{0}$. The fibre bundle in this case will be called an admissible bundle for $\mathbf{x}$.

Let $X_{n}$ be the statement that every microbundle over a locally-finite $n$ dimensional complex admits a bundle. Let $U_{n}$ be the statement that any two admissible bundles for the same microbundle over a locally-finite $n$-dimensional complex are isomorphic. An isomorphism in this case is a homeomorphism between the total spaces which preserves fibres and is the identity on the 0 -section.

Theorem 2. $X_{n}$ and $U_{n}$ are true for all $n$.
Proof. The proof will be by induction on $n . X_{0}$ and $U_{0}$ follow immediately from the fact that microbundles over a 0 -dimensional set are all trivial.

Next we show $X_{n-1}$ and $U_{n-1}$ imply $X_{n}$. Let $\mathbf{x}$ be a microbundle over a locally-finite $n$-complex $K$ with diagram: $K \xrightarrow{i} E \xrightarrow{i} K$. For each $n$-simplex $\sigma$ in $K$, we find an admissible (and trivial) bundle $\xi_{\sigma}$ for $\mathbf{x} \mid \sigma$. Thus we have a homeomorphism $h_{\sigma}: \sigma \times E^{n} \rightarrow E\left(\xi_{\sigma}\right)$, where $E\left(\xi_{\sigma}\right)$ is the total space of $\xi_{\sigma}$, such that $j h_{\sigma}(p, q)=p$ and $h_{\sigma}(p, 0)=i(p)$, for all $p$ in $\sigma$ and $q$ in $E^{n}$. Let $D$ be an open set in $E$ containing $i(K)$ such that $j^{-1}(\sigma) \cap D$ is contained in $E\left(\xi_{\sigma}\right)$. Let $K^{n-1}$ denote the $(n-1)$-skeleton of $K$, and $\mathbf{y}$ the microbundle: $K^{n-1} \xrightarrow{i^{\prime}}$ $j^{-1}\left(K^{n-1}\right) \cap D \xrightarrow{j^{\prime}} K^{n-1}$, where $i^{\prime}$ and $j^{\prime}$ are the restrictions of $i$ and $j$. By $X_{n-1}$, $\mathbf{y}$ admits a bundle $\eta$. Let $\sigma$ be any $n$-simplex in $K$. By the choice of $D$, for each point $p$ in $\partial \sigma$, the $\eta$-fibre over $p$ is contained in the $\xi_{\sigma}$-fibre over $p$. Then $\eta \mid \partial \sigma$ and $\xi_{\sigma} \mid \partial \sigma$ are both admissible bundles for $\mathbf{x} \mid \partial \sigma$, and since the second is trivial, by $U_{n-1}$ it follows that $\eta \mid \partial \sigma$ is trivial also. Hence, we have a homeomorphism $h_{\eta}: \partial \sigma \times E^{n} \rightarrow E(\eta \mid \partial \sigma)$ such that $j h_{\eta}(p, q)=p$ and $h_{\eta}(p, 0)=i(p)$, for all $p$ in $\partial \sigma$ and $q$ in $E^{n}$.

For each $p$ in $\partial \sigma$, define $g^{p}: E^{n} \rightarrow E^{n}$ by $h_{\sigma}^{-1} h_{\eta}(p, q)=\left(p, g^{p}(y)\right)$. Of course, $g^{p}$ is just the imbedding of the $\eta$-fibre over $p$ in the $\xi_{\sigma}$-fibre over $p$ relative to the coordinates given by $h_{\eta}$ and $h_{\sigma}$, hence $g^{p}$ is in $\mathscr{\Theta}_{0}(n)$. It is easy to check that $p \rightarrow g^{p}$ is continuous. Let $\sigma_{1}$ be a smaller concentric $n$-simplex contained in $\sigma$. Identify points in $\sigma$ - int $\sigma_{1}$ with $\partial \sigma \times I$, with $p$ in $\partial \sigma$ identified with $(p, 0)$. Let $F$ be the map guaranteed by Theorem 1 and, for each point $(p, t)$ in $\sigma-\operatorname{int} \sigma_{1}$, denote $F\left(g^{p}, t\right)$ by $g_{t}^{p}$. Finally let $E_{1}=E(\eta) \cup\left\{h_{\sigma}\left((p, t), g_{t}^{p}(q)\right) \mid(p, t)\right.$ in $\sigma$ - int $\sigma_{1}, q$ in $\left.E^{n}\right\} \cup E\left(\xi_{\sigma} \mid \sigma_{1}\right)$. We claim that $j \mid E_{1}: E_{1} \rightarrow K^{n-1} \cup \sigma$ is an admissible bundle for $\mathbf{x} \mid K^{n-1} \cup \sigma$.

We verify local triviality over $\sigma$. Let $f:\left(\sigma-\operatorname{int} \sigma_{1}\right) \times E^{n} \rightarrow E_{1}$ be given by $f((p, t), q)=h_{\sigma}\left((p, t), g_{t}^{p}(q)\right)$. Define $e^{p}$ in $\mathscr{H}_{0}(n)$ for each $(p, 1)$ in $\partial \sigma_{1}$ by $e^{p}(q)=\pi_{2} f^{-1} h_{\sigma}((p, 1), q)$, where $\pi_{2}: \sigma \times E^{n} \rightarrow E^{n}$ is projection onto the second factor. Now define $e: \sigma \times E^{n} \rightarrow j^{-1}(\sigma) \cap E_{1}$, an onto homeomorphism, by:

$$
e\left|\sigma_{1} \times E^{n}=h_{\sigma}\right| \sigma_{1} \times E^{n}
$$

and

$$
e((p, t), q)=f\left((p, t), e^{p}(q)\right)
$$

for $(p, t)$ in $\sigma-\operatorname{int} \sigma_{1}$.
To verify that $e$ is well-defined, we let ( $p, 1$ ) be any point in $\partial \sigma_{1}$. Then $\left.f^{-1} h_{\sigma}(p, 1), q\right)=\left((p, 1), e^{p}(q)\right)$, by definition of $e^{p}$, hence $\left.h_{\sigma}(p, 1), q\right)=f\left((p, 1), e^{p}(q)\right)$. This proves local triviality over int $\sigma$.

To verify local triviality on $\partial \sigma$, let ( $p, 0$ ) be any point in $\partial \sigma$. Let $N_{1}$ be a neighborhood of $(p, 0)$ in $K^{n-1}$ such that $\eta \mid N_{1}$ is trivial. Then we have a homeomorphism $h_{1}: N_{1} \times E^{n} \rightarrow j^{-1}\left(N_{1}\right) \cap E(\eta)$ such that $j h_{1}(q, r)=q$ and $h_{1}(q, 0)=i(q)$. Define $e^{q}$ in $\mathscr{H}_{0}(n)$ by $e^{q}(r)=\pi_{2} f^{-1} h_{1}(q, r)$. Let $N_{2}=\{(q, t) \mid t<1$, $q$ in $\left.N_{1} \cap \partial \sigma\right\}$ and $N=N_{1} \cup N_{2}$. Then $N$ is a neighborhood of $(p, 0)$ in $K^{n-1} \cup \sigma$. Define $e: N \times E^{n} \rightarrow j^{-1}(N) \cap E_{1}$ by:

$$
e \mid N_{1} \times E^{n}=h_{1}
$$

and

$$
e((q, t), r)=f\left((q, t), e^{q}(r)\right)
$$

for $(q, t)$ in $N_{2}$.
As before, $e$ is seen to be a well-defined onto homeomorphism, and this completes our demonstration of the local triviality of $j \mid E_{1}: E_{1} \rightarrow K^{n-1} \cup \sigma$. Thus we have extended $\eta$ to an admissible bundle over $K^{n-1} \cup \sigma$ and, by repeating this process on each $n$-simplex $\sigma$, we get an admissible bundle for $\mathbf{x}$.

Finally we show $X_{n}$ implies $U_{n}$, and the proof for Theorem 2 will be finished. Let $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{\alpha}, \cdots\left(\alpha<\alpha_{0}\right)$ be a well-ordering of those simplexes in the $n$-complex $K$ which are not faces of some higher dimensional simplex in $K$. Let $\xi_{1}$ and $\xi_{2}$ be two admissible bundles for $\mathbf{x}$, a microbundle over $K$, with diagram $K \xrightarrow{i} E \xrightarrow{j} K$. By $X_{n}$ there is no loss in generality in assuming $E\left(\xi_{1}\right)$ is contained in $E\left(\xi_{2}\right)$. Let $f_{0}: E\left(\xi_{1}\right) \rightarrow E\left(\xi_{2}\right)$ be the inclusion. Let $N\left(\sigma_{\alpha}\right)$ be the closed star neighborhood of $\sigma_{a}$ in the second barycentric subdivision. Let $K_{\alpha}=$ $\mathrm{U}_{\beta \leq \alpha} \sigma_{\beta}$, a subcomplex. Suppose for each $\beta<\alpha$ we have defined $f_{\beta}: E\left(\xi_{1}\right) \rightarrow$ $E\left(\xi_{2}\right)$, an imbedding taking fibres into fibres, and $f_{\beta}$ is the identity on $i(K)$. Suppose further that $f_{\beta} \mid K_{\beta}$ is an isomorphism from $\xi_{1} \mid K_{\beta}$ onto $\xi_{2} \mid K_{\beta}$ and that, for each point $p$ in $E\left(\xi_{1}\right)-j^{-1}\left(N\left(\sigma_{\beta}\right)\right)$, there is a $\gamma<\beta$ and a neighborhood $N$ of $p$ such that $f_{\beta}\left|N=f_{\beta^{\prime}}\right| N$ for $\gamma \leqq \beta^{\prime} \leqq \beta$. We construct $f_{\alpha}$, satisfying these properties.

Let $g_{\alpha}: E\left(\xi_{1}\right) \rightarrow E\left(\xi_{2}\right)$ be $f_{\alpha \rightarrow 1}$ if $\alpha-1$ exists. Otherwise $g_{\alpha}=\operatorname{limit}_{\beta \rightarrow \alpha} f_{\beta}$, which exists because of the last induction property and since each point in $K$ lies in only finitely-many $N\left(\sigma_{\beta}\right)$ 's. Then $g_{\alpha}\left(E\left(\xi_{1}\right)\right)$ is the total space of a bundle $\eta_{\alpha}$ over $K$ in a natural way, with the projection map $j$ restricted. Since $N\left(\sigma_{a}\right)$ is contractible, $\eta_{a} \mid N\left(\sigma_{\alpha}\right)$ and $\xi_{2} \mid N\left(\sigma_{a}\right)$ are both trivial. Let $c_{a}: N\left(\sigma_{a}\right) \times E^{n} \rightarrow$ $E\left(\eta_{\alpha} \mid N\left(\sigma_{\alpha}\right)\right)$ and $d_{\alpha}: N\left(\sigma_{\alpha}\right) \times E_{n} \rightarrow E\left(\xi_{2} \mid N\left(\sigma_{\alpha}\right)\right)$ be isomorphisms, so for example,
$j c_{a}(p, q)=p$ and $c_{a}(p, 0)=i(p)$. Let $h^{p}$ in $\Theta_{0}(n)$, for each $p$ in $N\left(\sigma_{\alpha}\right)$, be defined by $d_{\alpha}^{-1} c_{\alpha}(p, q)=\left(p, h^{p}(q)\right)$. As before $p \rightarrow h^{p}$ is continuous. Let $t: K \rightarrow I$ be a map such that $t\left(K-N\left(\sigma_{\alpha}\right)\right)=0$ and $t\left(\sigma_{\alpha}\right)=1$. If $F$ is the function guaranteed in Theorem 1, let $h_{t}^{p}=F\left(h^{p}, t(p)\right)$. Define $h: E\left(\eta_{\alpha}\right) \rightarrow E\left(\xi_{2}\right)$ by

$$
h(r)=d_{\alpha}\left(j(r), h_{t}^{j(r)} \pi_{2} c_{\alpha}^{-1}(r)\right) \quad \text { for } j(r) \text { in } N\left(\sigma_{a}\right),
$$

and $h$ is the identity elsewhere. To see that $h$ is continuous, suppose $j(r)$ is in $N\left(\sigma_{\alpha}\right) \cap \mathrm{Cl}\left(K-N\left(\sigma_{\alpha}\right)\right)$. Then $t(j(r))=0$ and $h_{t}^{j(r)}=h^{j(r)}$; hence

$$
\begin{aligned}
h(r) & =d_{\alpha}\left(j(r), h^{j(r)} \pi_{2} c_{\alpha}^{-1}(r)\right) \\
& =d_{\alpha}\left(j(r), \pi_{2} d_{\alpha}^{-1} c_{\alpha}\left(j(r), \pi_{2} c_{\alpha}^{-1}(r)\right)\right) \\
& =d_{\alpha}\left(j(r), \pi_{2} d_{\alpha}^{-1}(r)\right) \\
& =r
\end{aligned}
$$

Note that if $t=1$, then $h_{t}^{p}$ is onto, hence $h$ takes the $\eta_{\alpha^{*}}$-fibres over $\sigma_{\alpha}$ onto the $\xi_{2}$-fibres over $\sigma_{\alpha}$. Furthermore if the $\eta_{\alpha}$-fibre over $p$ coincides with the $\xi_{2}$-fibre over $p$, then $h^{p}$ is onto, as is $h_{t}^{p}$ by property (3) of Theorem 1 , hence the image under $h$ of the $\eta_{\alpha}$-fibre coincides with the $\xi_{2}$-fibre. Finally, define $f_{\alpha}=h g_{\alpha}$. It is easy to see that $f_{\alpha}$ satisfies the induction properties.

The isomorphism from $\xi_{1}$ onto $\xi_{2}$ is defined to be $\operatorname{limit}_{\omega \rightarrow \alpha_{0}} f_{\alpha}$. This finishes the proof of Theorem 2.

Corollary 1. If B is a neighborhood retract in $E^{n}$ (for example, any separable metric topological manifold) then any microbundle over $B$ admits a unique bundle.

Proof. Let $V$ be an open set in $E^{n}$ containing $B$ and $\rho: V \rightarrow B$, a retraction. Then if $\mathbf{x}$ is a microbundle over $B, \rho^{*}(\mathbf{x})$ may be regarded as an extension of $\mathbf{x}$ to all of $V$. But $V$ can be triangulated, and Theorem 2 applied to give both the existence and uniqueness.

Denote by $\mathscr{H}_{0}^{+}(n)$ those elements in $\mathscr{H}_{0}(n)$ which preserve orientation.
Corollary 2. For large enough n, the canonical homomorphism $\pi_{7}\left(\mathrm{SO}(n) \rightarrow \pi_{7}\left(\mathscr{F}_{0}^{+}(n)\right)\right.$ is not an isomorphism.

Proof. It is shown in [4] that the homomorphism $k_{0} S^{8} \rightarrow k_{\text {top }} S^{8}$ is not an isomorphism. It is well known that each vector $n$-bundle over $S^{8}$ determines an element in $\pi_{7}(\mathrm{SO}(n))$. By Theorem 2 each microbundle over $S^{8}$ having fibre dimension $n$ determines an element in $\pi_{7}\left(\mathscr{F}_{0}^{+}(n)\right)$. Corollary 2 follows from the fact that only isomorphic bundles (vector bundles) determine the same element in $\pi_{7}\left(\mathscr{F}_{0}^{+}\right)\left(\pi_{7}(\mathrm{SO}(n))\right.$ ), and trivial bundles determine the identity element (cf. [5, p. 97]).

On the other hand it is a consequence of [1] and [3] that, for $n \leqq 3$, the homomorphisms $\pi_{1}(\mathrm{SO}(n)) \rightarrow \pi_{i}\left(\mathscr{F}_{0}^{+}(n)\right), i=1,2,3, \cdots$ are isomorphisms, hence
any microbundle over a sphere having fibre dimension $\leqq 3$ can be represented by a vector bundle.

Institute for Advanced Study and
University of Michigan

## References

1. J. Cerf, Groupes d'automorphismes et groupes de diffeomorphismes, Bull. Soc. Math. France, 87 (1959), 319-329.
2. J. M. Kister, Microbundles are fibre bundles, Bull. Amer. Math. Soc., 69 (1963), 854-857.
3. H. Kneser, Die deformationssätze der einfach zusammenhängenden Flächen, Math. Z., 25 (1926), 362-372.
4. J. Milnor, Microbundles, Part I, Princeton University, 1963 (mimeographed).
5. N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, 1951.
(Received August 27, 1963)

[^0]:    * Supported by a grant from the Institute for Advanced Study and by NSF grant G-24156.
    ${ }^{1}$ B. Mazur has obtained this result also.

