Microbundles are Fibre Bundles

Author(s): J. M. Kister

Source: Annals of Mathematics, Jul., 1964, Second Series, Vol. 80, No. 1 (Jul., 1964), pp. 190-199

Published by: Mathematics Department, Princeton University

Stable URL: https://www.jstor.org/stable/1970498

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics

Microbundles are Fibre Bundles^{*}

By J. M. KISTER

Let $\mathfrak{S}(n)$ be the space of all imbeddings of euclidean *n*-space E^n into itself provided with the compact-open topology. Let $\mathcal{K}(n)$ be the subspace of all onto homeomorphisms. Those elements in $\mathcal{F}(n)$ and $\mathcal{K}(n)$ which preserve the origin 0 will be denoted by $\mathfrak{G}_0(n)$ and $\mathcal{K}_0(n)$ respectively. Briefly, the main result (Theorem 2)¹ of this paper is that every microbundle over a complex contains a fibre bundle (in the sense of [5], where fibre $= E^n$, group $= \mathcal{K}_0(n)$), and the fibre bundle is unique. This implies that every such microbundle is mb-isomorphic to a fibre bundle, and any two such fibre bundles are fb-isomorphic. The same result extends to microbundles over neighborhood retracts in E^n . In the special case of a topological manifold M and its tangent microbundle, a neighborhood U_x is selected for each point x in M so that U_x is an open cell and varies continuously with x.

The proof of Theorem 2 depends on extending homeomorphisms, and requires an examination of the non-closed subset $\mathcal{H}_0(n)$ in $\mathcal{G}_0(n)$. We show that $\mathcal{H}_0(n)$ is a weak kind of deformation retract of $\mathcal{G}_0(n)$. More precisely:

THEOREM 1. There is a map $F: \mathfrak{G}_0(n) \times I \to \mathfrak{G}_0(n)$, for each n, such that

- (1) F(g, 0) = g for all g in $\mathbb{S}_0(n)$
- (2) F(g, 1) is in $\mathcal{H}_0(n)$ for all g in $\mathfrak{S}_0(n)$.
- (3) F(h, t) is in $\mathcal{H}_0(n)$ for all h in $\mathcal{H}_0(n)$, t in I.

For definitions and basic results about microboundles cf. [4]. In [2] an introduction and outline of this paper will be found.

The author wishes to express his gratitude to D.R. McMillan for several helpful conversations.

Definitions

The disk of radius r with center at 0 in E^n is denoted by D_r and, if K is a compact set in E^n containing 0, we define the radius of K to be max{ $r | D_r \subset K$ }. Let d be the usual metric in E^n . If $g_1, g_2: K \to E^n$ are imbeddings of the compact set K, then we say g_1 and g_2 are within ε if for each x in K it is true that $d(g_1(x), g_2(x)) < \varepsilon$. If g is in $\mathfrak{S}_0(n)$ and K is a compact set in E^n , $V(g, K, \varepsilon)$ denotes all elements h in $\mathfrak{S}_0(n)$ such that g | K and h | K are within ε . The collection of all such $V(g, K, \varepsilon)$ is, of course, a basis for $\mathfrak{S}_0(n)$.

Two compact sets in E^n , K_1 and K_2 , are ε -homeomorphic if there is a

^{*} Supported by a grant from the Institute for Advanced Study and by NSF grant G-24156.

¹ B. Mazur has obtained this result also.

homeomorphism $h: K_1 \to K_2$ within ε of the identity $1: K_1 \to K_1$.

If $0 \leq a < b < d$ and a < c < d and t is in I, then we define $\theta_t(a, b, c, d)$ to be the homeomorphism of E^n onto itself, fixed on D_a and outside D_d as follows. Let L be a ray emanating from the origin and coordinatized by distance from the origin. Then θ_t is fixed on [0, a] and on $[d, \infty)$, and it takes b onto (1-t)b + tc and is linear on [a, b] and [b, d]. We denote $\theta_1(a, b, c, d)$ by $\theta(a, b, c, d)$, and $\theta(0, b, c, d)$ by $\theta(b, c, d)$. Clearly $(t, a, b, c, d) \rightarrow \theta_t(a, b, c, d)$ is continuous, regarded as a function from a subset of E^5 into $\mathcal{H}_0(n)$.

When the dimension is unambigous \mathfrak{G} , \mathcal{H}_0 etc. will be used for $\mathfrak{G}(n)$, $\mathcal{H}_0(n)$ etc.

A useful lemma

LEMMA. Let g and h be in $\mathfrak{S}_0(n)$ with $h(E^n) \subset g(E^n)$. Let a, b, c and d be real numbers satisfying $0 \leq a < b$, 0 < c < d, and such that $h(D_b) \subset g(D_c)$. Then there is an isotopy $\varphi_i(g, h; a, b, c, d) = \varphi_i(t \in I)$ of E^n onto itself satisfying

 $(1) \ arphi_0 = 1;$

 $(2) \quad \varphi_1(h(D_b)) \supset g(D_c);$

(3) φ_t is fixed outside $g(D_d)$ and on $h(D_a)$.

Furthermore $(g, h, a, b, c, d, t) \rightarrow \varphi_t$ is a continuous function from the appropriate subset of $\mathfrak{S}_0 \times \mathfrak{S}_0 \times E^5$ into \mathfrak{K}_0 .

PROOF. Let a' be the radius of $g^{-1}h(D_a)$; note that a' < c. Let b' be the radius of $g^{-1}h(D_b)$; note that $a' < b' \leq c < d$.

We first shrink $h(D_a)$ inside $g(D_{a'})$ with a homeomorphism σ fixed outside $h(D_b)$. This can be done as follows. Let a'' be the radius of $h^{-1}g(D_{a'})$; note that $a'' \leq a < b$. Define

$$\sigma = egin{cases} h heta(a,\,a^{\prime\prime},\,b)h^{-1} & ext{ on } h(D_b) \ 1 & ext{ elsewhere .} \end{cases}$$

Next we get an isotopy $\psi_t(t \in I)$ taking $g(D_{b'})$ onto $g(D_c)$, leaving $g(D_{a'})$, and the exterior of $g(D_d)$ fixed. Define

$$\psi_t = egin{cases} g heta_t(a',\,b',\,c,\,d) g^{-1} & ext{on } \mathbf{g}(D_d) \ 1 & ext{elsewhere .} \end{cases}$$

Finally define $\varphi_t = \sigma^{-1} \psi_t \sigma$. It is easy to verify that (1), (2) and (3) are satisfied. The continuity of φ_t depends on the following three propositions.

PROPOSITION 1. Let g be in \mathfrak{S}_0 , and let r and ε be two positive numbers. Then there is a $\delta > 0$ so that, if g_1 is in $V(g, D_{r+\varepsilon}, \delta)$, then

- (1) $g_1(D_{r+\varepsilon}) \supset g(D_r);$
- (2) $g_1^{-1}|g(D_r)$ and $g^{-1}|g(D_r)$ are within ε . PROOF. Let

$$\delta_{\scriptscriptstyle 1} = \min \left\{ dig(g(x),\,g(y)ig) \,|\, x \in D_r,\, y
otin \operatorname{t}\, D_{r+arepsilon}
ight\}$$

and

$$\delta_2 = \min \left\{ dig(g(x),\,g(y)ig) \,|\, x,\,y \in D_r,\, d(x,\,y) \geqq arepsilon
ight\}$$
 .

Let

$$\delta = \min \{\delta_1, \delta_2\}$$

Suppose g_1 is in $V(g, D_{r+\varepsilon}, \delta)$. Then condition (1) is satisfied, for otherwise there is a z in Bd $g_1(D_{r+\varepsilon}) \cap g(D_r)$. Let $x = g^{-1}(z) \in D_r$, and $y = g_1^{-1}(z) \in \text{Bd } D_{r+\varepsilon}$. Then $\delta_1 \leq d(g(x), g(y)) = d(g_1(y), g(y))$, contradicting the choice of g_1 .

To see that condition (2) is satisfied, suppose not. Then there is a z in $g(D_r)$ such that, if $x = g^{-1}(z)$ and $y = g_1^{-1}(z)$, then $d(x, y) \ge \varepsilon$ and x and y are in $D_{r+\varepsilon}$. It follows that $\delta_2 \le d(g(x), g(y)) = d(g_1(y), g(y))$, contradicting the choice of g_1 .

PROPOSITION 2. Let C be a compact set, $h: C \to E^n$ an imbedding, D a compact set in E^n containing h(C) in its interior, and $g: D \to E^n$ another imbedding. For any $\varepsilon > 0$, there is a δ so that, if $g_1: D \to E^n$, $h_1: C \to E^n$ are imbeddings within δ of g and h respectively, then g_1h_1 is defined and within ε of gh.

PROOF. Since D contains h(C) on its interior and h(C) is compact, there is a $\delta_1 > 0$ such that the δ_1 -nbd of h(C) is contained in D. Let δ_2 be so small that $x, y \in D$ and $d(x, y) < \delta_2$ imply $d(g(x), g(y)) < \varepsilon/2$. Choose $\delta = \min(\delta_1, \delta_2, \varepsilon/2)$. Then if $g_1: D \to E^n$ and $h_1: C \to E^n$ are imbeddings within δ of g and h respectively, g_1h_1 is defined, since $\delta \leq \delta_1$. Let $z \in C$ and $x = h(z), y = h_1(z)$. It follows that $d(x, y) < \delta \leq \delta_2$, hence $d(g(x), g(y)) < \varepsilon/2$. Also $d(g(y), g_1(y)) < \delta \leq \varepsilon/2$, hence $d(gh(z), g_1h_1(z)) = d(g(x), g_1(y)) < \varepsilon$.

Remark. Proposition 2 shows that the semi-group \mathcal{G} (or \mathcal{G}_0) whose multiplication consists of composition, is a topological semi-group, i.e., multiplication is continuous.

PROPOSITION 3. Let g and h be in \mathfrak{G}_0 , and let a be a non-negative number such that $h(D_a) \subset g(E^n)$. Let $r = \operatorname{radius} g^{-1}h(D_a)$. Then r = r(g, h, a) is continuous simultaneously in the variables g, h and a.

PROOF. Case 1. a > 0. Let $T_{a_1} : E^n \to E^n$ be defined by $T_{a_1}(x) = (a_1/a)x$, for positive a_1 . Clearly T_{a_1} varies continuously with a_1 , hence Proposition 2 shows that, given any nbd N of h, there is a nbd M of h and a nbd P of a such that (h_1, a_1) in $M \times P$ implies that $h_1 T_{a_1}$ is in the nbd N of h1 = h. Using Propositions 1 and 2, we can conclude that, for any ε , there is a nbd L_1 of g, M_1 of h, and P_1 of a such that (g_1, h_1, a_1) in $L_1 \times M_1 \times P_1$ implies $g_1^{-1}h_1T_{a_1} \mid D_a$ is defined and is within ε of $g^{-1}h \mid D_a$. This means $g^{-1}h(D_a)$ and $g_1^{-1}h_1(D_{a_1})$ are ε -homeomorphic, and it can easily be seen that $\mid r(g, h, a) - r(g_1, h_1, a_1) \mid < \varepsilon$.

Case 2. a=0. Then r(g, h, a) = 0 and, for any ε , there is a δ such that diameter $g^{-1}h(D_{\delta}) < \varepsilon$. As in Case 1, using Propositions 1 and 2, we can conclude that $g_1^{-1}h_1 \mid D_{\delta}$ varies continuously with g_1 and h_1 ; hence by restricting g_1 and h_1 to lie near g and h respectively, and for $a_1 \in [0, \delta]$, we have $r(g_1, h_1, a_1) < 2\varepsilon$. This finishes the proof of Proposition 3.

Going back to the proof of the Lemma we first show $\sigma = \sigma(g, h, a, b)$ is continuous. By applying Proposition 3 twice we see that a'' depends continuously on g, h, and a, hence $\theta(a, a'', b)$ depends continuously on g, h, a and b. Note that σ would be the same function if it were defined as $h\theta(a, a'', b)h^{-1}$ on the set $h(D_{b+2})$ and 1 elsewhere. Since $h(D_{b+1}) \subset \inf h(D_{b+2})$, there is a neighborhood N of h such that h_1 in N implies $h_1(D_{b+1}) \subset h(D_{b+2})$, hence if h_1 is in N, b_1 is in the interval (0, b+1), and g_1 and a_1 satisfy the hypotheses of the Lemma, then $\sigma_1 = \sigma(g_1, h_1, a_1, b_1)$ can be defined as $h_1\theta(a_1, a''_1, b_1)h_1^{-1}$ on $h(D_{b+2})$ and 1 everywhere else, where $a''_1 = a''(a_1)$.

We may assume, using Proposition 1, that N has been chosen so that $h_1(D_{b+3}) \supset h(D_{b+2})$ for h_1 in N, hence $h_1^{-1} | h(D_{b+2})$ is defined. Proposition 1 also shows that $h_1^{-1} | h(D_{b+2})$ varies continuously with h_1 . Using Proposition 2, we conclude that $\theta(a_1, a_1'', b_1)h_1^{-1} | h(D_{b+2})$ varies continuously with g_1, h_1, a_1 and b_1 . Finally applying Proposition 2 again we see that $\sigma_1 | h(D_{b+2}) = h_1\theta(a_1, a_1'', b_1)h_1^{-1} | h(D_{b+2})$ varies continuously with g_1, h_1, a_1 and hence $\sigma(g, h, a, b)$ is continuous.

The proof that $\psi_t = \psi(g, h, a, b, c, d, t)$ is continuous is virtually the same as that for σ . From Propositions 1 and 2, it is easy to see that \mathcal{H} is a topological group, hence the product φ_t is continuous in σ and ψ_t , and therefore φ_t depends continuously on g, h, a, b, c, d and t. q.e.d.

Proof of Theorem 1

Before we give the proof of Theorem 1 we state and prove two more propositions.

PROPOSITION 4. Let g be in \mathfrak{S}_0 , and r_i be the radius of $g(D_i)$ for each positive integer i. Then there is an element h in \mathfrak{S}_0 such that $h(D_i) = D_{r_i}$, for each i, and h depends continuously on g.

PROOF. Let L be any ray emanating from the origin in E^n . Coordinatize L by the distance from 0. We shall define h on L so that

$$h(L) = L \cap \left(igcup_{i=1}^\infty D_{r_i}
ight)$$
 .

The segment [0, 1] on L is mapped linearly onto $[0, r_1]$. More generally, [i, i + 1]

is mapped linearly by h onto $[r_i, r_{i+1}]$, $i = 1, 2, \cdots$. It is easily seen that h is in \mathcal{G}_{0} .

To see that h is continuous as a function of g, we merely have to note that h depends only on the r_i , and that each r_i depends continuously on g according to Proposition 3.

PROPOSITION 5. Let $F: \mathfrak{S}_0 \times [0, 1) \to \mathfrak{S}_0$ be continuous, and denote F(g, t) by g_t . Suppose $g_t | D_n = g_{1-(1/2)^n} | D_n$ for all t in $[1-(1/2)^n, 1)$, and $n = 1, 2, \cdots$. Then F can be extended to $\mathfrak{S}_0 \times I$.

PROOF. Define F(g, 1) to be $\lim_{t\to 1} g_t = g_1$. Clearly g_1 is well-defined, continuous, and 1-1, and by *invariance of domain*, g_1 is open, hence g_1 is in \mathfrak{G}_0 .

We verify continuity of F at (g, 1). Let K be any compact set in E^n , $\varepsilon > 0$, and let $V(g_1, K, \varepsilon)$ be the neighborhood they determine in \mathfrak{S}_0 . Let n be large enough that K is contained in D_n . Then $g_{1-(1/2)^n}$ is in $V(g_1, K, \varepsilon)$, so by continuity of F at $(g, 1 - (1/2)^n)$, there is a neighborhood N of g such that

$$F\Big(N imes 1-\Big(rac{1}{2}\Big)^n\Big)\subset V(g_{ extsf{i}},\,K,\,arepsilon)$$
 .

It follows that

$$F\left(N imes \left[1 - \left(\frac{1}{2}\right)^n, 1\right]
ight] \subset V(g_1, K, \varepsilon)$$

since $g'_t | D_n = g'_{1-(1/2)^n} | D_n$ for g' in N, t in $[1 - (1/2)^n, 1]$.

We return to the proof of Theorem 1. Let g in \mathfrak{G}_0 be given. Use Proposition 4 to find h = h(g). First we shall produce an isotopy $\alpha_i(t \in I) : E^n \to g(E^n)$ such that

- (a) $\alpha_0 = h;$
- (b) $\alpha_1(E^n) = g(E^n);$
- (c) $\alpha_t = \alpha(g, t)$ is continuous in g and t.

We do this in an infinite number of steps. To define $\alpha_t(t \in [0, 1/2])$ we use the Lemma for a = 0, b = c = 1, d = 2, and obtain $\varphi_t(t \in I)$. Define $\alpha_t = \varphi_{2t}h(t \in [0, 1/2])$. Then $\alpha_0 = h, \alpha_{1/2}(D_1) \supset g(D_1)$ and, by Proposition 4, the Lemma, and the remark after Proposition 2, $\alpha_t(t \in [0, 1/2])$ is continuous in g and t. Note that $\alpha_{1/2}(D_2) \subset g(D_2)$ by property (3) of the Lemma.

Next we define, $\alpha_t(t \in [1/2, 3/4])$ by again using the Lemma, this time for "h" = $\alpha_{1/2}$, a = 1, b = c = 2, d = 3, and we obtain $\varphi_t(t \in I)$. Now define $\alpha_t = \varphi_{4t-2}\alpha_{1/2}(t \in [1/2, 3/4])$. Then α_t is an extension of that obtained in the first step, $\alpha_{3/4}(D_2) \supset g(D_2)$, and since $\alpha_{1/2}$ depends continuously on g, we can conclude as before that $\alpha_t(t \in [1/2, 3/4])$ is continuous in g and t. Note that $\alpha_{3/4}(D_3) \subset g(D_3)$, and that $\alpha_t \mid D_1 = \alpha_{1/2} \mid D_1$ for t in [1/2, 3/4], by property (3) of the Lemma.

We continue in this manner defining for each integer n, $\alpha_t (t \in [1 - (1/2)^n,$

 $1 - (1/2)^{n+1}$ such that $\alpha_{1-(1/2)^n}(D_n) \supset g(D_n)$ and $\alpha_t \mid D_n = \alpha_{1-(1/2)^n} \mid D_n$ for t in $[1 - (1/2)^n, 1 - (1/2)^{n+1}]$.

Proposition 5 allows us to define α_1 so that $\alpha_t(t \in I)$ depends continuously on g and t, and $\alpha_1(E^n) = g(E^n)$.

In the second stage, we produce an isotopy $\beta_t (t \in I)$: $E^n \to E^n$ such that

- (a) $\beta_0 = h$,
- (b) $\beta_1 = 1$,
- (c) $\beta_t = \beta(g, t)$ is continuous in g and t.

This we do again in an infinite number of steps, first obtaining $\beta_t(t \in [0, 1/2])$ as follows. We have $h(D_1) = D_{r_1}$ where $r_1 = \text{radius of } g(D_1)$, since h was constructed so as to take round disks onto round disks. We shall preserve this property throughout the isotopy $\beta_t(t \in I)$. Let L be any ray emanating from the origin in E^n and coordinatized by distance from the origin. For t in I, let φ_t take the interval $[0, r_1]$ in L linearly onto $[0, (1 - t)r_1 + t]$ and translate $[r_1, \infty)$ to $[(1 - t)r_1 + t, \infty)$. This defines φ_t in \mathcal{H}_0 for each t in I. Now let $\beta_t = \varphi_{2t}h(t \in [0, 1/2])$. Then $\beta_0 = h$ and $\beta_{1/2} | D_1 = 1$, and since r_1 and h depend continuously on g, then φ_{2t} and hence β_t are continuous in g and t.

Let s_2 be such that $\beta_{1/2}(D_2) = D_{s_2}$, and define $\beta_t(t \in [1/2, 3/4])$ as follows. Let L be any ray as before, and let $\varphi_t(t \in I)$ take $[1, s_2]$ in L linearly onto $[1, (1-t)s_2 + 2t]$, translate $[s_2, \infty)$ onto $[(1-t)s_2 + 2t, \infty)$, and leave [0, 1] fixed. Define $\beta_t = \varphi_{4t-2}\beta_{1/2}(t \in [1/2, 3/4])$. Then this extends $\beta_t(t \in [0, t])$, $\beta_{3/4} \mid D_2 = 1$, and β_t depends continuously on g and t.

Continuing in this manner, as in the first stage, we obtain an isotopy $\beta_i(t \in I)$ which depends continuously on g and t.

Now define

$$F(g,t) = egin{cases} lpha_{1-2t}lpha_{1}^{-1}g & ext{for }t ext{ in }[0,1/2] \ eta_{2t-1}lpha_{1}^{-1}g & ext{for }t ext{ in }[1/2,1] \ . \end{cases}$$

It is easy to check that F satisfies (1) and (2). An immediate consequence of Proposition 4 is that h is onto if g is. Each φ_t that occurs in a step of the construction of α_t and β_t is onto, hence α_t and β_t , and finally F(g, t) is onto if g is, so property (3) holds. Continuity of F follows from that of α_t and β_t and from Propositions 1 and 2.

Admissible bundles

A microbundle $\mathbf{x}: B \xrightarrow{i} E \xrightarrow{j} B$, having fibre dimension *n*, admits a bundle providing there is an open set E_1 in *E* containing the 0-section i(B) such that $j \mid E_1: E_1 \longrightarrow B$ is a fibre bundle with fibre E^n and structural group \mathcal{H}_0 . The fibre bundle in this case will be called an *admissible bundle* for \mathbf{x} . Let X_n be the statement that every microbundle over a locally-finite *n*dimensional complex admits a bundle. Let U_n be the statement that any two admissible bundles for the same microbundle over a locally-finite *n*-dimensional complex are isomorphic. An isomorphism in this case is a homeomorphism between the total spaces which preserves fibres and is the identity on the 0-section.

THEOREM 2. X_n and U_n are true for all n.

PROOF. The proof will be by induction on n. X_0 and U_0 follow immediately from the fact that microbundles over a 0-dimensional set are all trivial.

Next we show X_{n-1} and U_{n-1} imply X_n . Let **x** be a microbundle over a locally-finite *n*-complex *K* with diagram: $K \stackrel{i}{\to} E \stackrel{j}{\to} K$. For each *n*-simplex σ in *K*, we find an admissible (and trivial) bundle ξ_{σ} for $\mathbf{x} \mid \sigma$. Thus we have a homeomorphism $h_{\sigma}: \sigma \times E^n \to E(\xi_{\sigma})$, where $E(\xi_{\sigma})$ is the total space of ξ_{σ} , such that $jh_{\sigma}(p,q) = p$ and $h_{\sigma}(p,0) = i(p)$, for all p in σ and q in E^n . Let D be an open set in E containing i(K) such that $j^{-1}(\sigma) \cap D$ is contained in $E(\xi_{\sigma})$. Let K^{n-1} denote the (n-1)-skeleton of K, and **y** the microbundle: $K^{n-1} \stackrel{i'}{\to} j^{-1}(K^{n-1}) \cap D \stackrel{j'}{\to} K^{n-1}$, where i' and j' are the restrictions of i and j. By X_{n-1} , **y** admits a bundle η . Let σ be any *n*-simplex in K. By the choice of D, for each point p in $\partial \sigma$, the η -fibre over p is contained in the ξ_{σ} -fibre over p. Then $\eta \mid \partial \sigma$ and $\xi_{\sigma} \mid \partial \sigma$ are both admissible bundles for $\mathbf{x} \mid \partial \sigma$, and since the second is trivial, by U_{n-1} it follows that $\eta \mid \partial \sigma$ is trivial also. Hence, we have a homeomorphism $h_{\eta}: \partial \sigma \times E^n \to E(\eta \mid \partial \sigma)$ such that $jh_{\eta}(p,q) = p$ and $h_{\eta}(p,0) = i(p)$, for all p in $\partial \sigma$ and q in E^n .

For each p in $\partial \sigma$, define $g^p: E^n \to E^n$ by $h_{\sigma}^{-1}h_{\eta}(p,q) = (p, g^p(y))$. Of course, g^p is just the imbedding of the η -fibre over p in the ξ_{σ} -fibre over p relative to the coordinates given by h_{η} and h_{σ} , hence g^p is in $\mathfrak{S}_0(n)$. It is easy to check that $p \to g^p$ is continuous. Let σ_1 be a smaller concentric n-simplex contained in σ . Identify points in σ — int σ_1 with $\partial \sigma \times I$, with p in $\partial \sigma$ identified with (p, 0). Let F be the map guaranteed by Theorem 1 and, for each point (p, t) in σ — int σ_1 , denote $F(g^p, t)$ by g_i^p . Finally let $E_1 = E(\eta) \cup \{h_{\sigma}((p, t), g_i^p(q)) \mid (p, t)$ in σ — int σ_1 , q in $E^n \} \cup E(\xi_{\sigma} \mid \sigma_1)$. We claim that $j \mid E_1: E_1 \to K^{n-1} \cup \sigma$ is an admissible bundle for $\mathbf{x} \mid K^{n-1} \cup \sigma$.

We verify local triviality over σ . Let $f: (\sigma - \operatorname{int} \sigma_1) \times E^n \to E_1$ be given by $f((p, t), q) = h_{\sigma}((p, t), g_i^p(q))$. Define e^p in $\mathcal{H}_0(n)$ for each (p, 1) in $\partial \sigma_1$ by $e^p(q) = \pi_2 f^{-1} h_{\sigma}((p, 1), q)$, where $\pi_2: \sigma \times E^n \to E^n$ is projection onto the second factor. Now define $e: \sigma \times E^n \to j^{-1}(\sigma) \cap E_1$, an onto homeomorphism, by:

$$e\,|\,\sigma_{\scriptscriptstyle 1} imes E^{\,n}=h_{\sigma}\,|\,\sigma_{\scriptscriptstyle 1} imes E^{\,n}$$

and

$$e((p, t), q) = f((p, t), e^{p}(q))$$

for (p, t) in σ – int σ_1 .

To verify that e is well-defined, we let (p, 1) be any point in $\partial \sigma_1$. Then $f^{-1}h_{\sigma}(p, 1), q) = ((p, 1), e^{p}(q))$, by definition of e^{p} , hence $h_{\sigma}(p, 1), q) = f((p, 1), e^{p}(q))$. This proves local triviality over int σ .

To verify local triviality on $\partial \sigma$, let (p, 0) be any point in $\partial \sigma$. Let N_1 be a neighborhood of (p, 0) in K^{n-1} such that $\eta \mid N_1$ is trivial. Then we have a homeomorphism $h_1: N_1 \times E^n \to j^{-1}(N_1) \cap E(\eta)$ such that $jh_1(q, r) = q$ and $h_1(q, 0) = i(q)$. Define e^q in $\mathcal{H}_0(n)$ by $e^q(r) = \pi_2 f^{-1}h_1(q, r)$. Let $N_2 = \{(q, t) \mid t < 1, q \text{ in } N_1 \cap \partial \sigma\}$ and $N = N_1 \cup N_2$. Then N is a neighborhood of (p, 0) in $K^{n-1} \cup \sigma$. Define $e: N \times E^n \to j^{-1}(N) \cap E_1$ by:

$$e \mid N_1 \times E^n = h_1$$

and

$$eig((q,\,t),\,rig)=fig((q,\,t),\,e^q(r)ig)$$

for (q, t) in N_2 .

As before, e is seen to be a well-defined onto homeomorphism, and this completes our demonstration of the local triviality of $j | E_1: E_1 \to K^{n-1} \cup \sigma$. Thus we have extended η to an admissible bundle over $K^{n-1} \cup \sigma$ and, by repeating this process on each *n*-simplex σ , we get an admissible bundle for **x**.

Finally we show X_n implies U_n , and the proof for Theorem 2 will be finished. Let $\sigma_1, \sigma_2, \dots, \sigma_{\alpha}, \dots (\alpha < \alpha_0)$ be a well-ordering of those simplexes in the *n*-complex *K* which are not faces of some higher dimensional simplex in *K*. Let ξ_1 and ξ_2 be two admissible bundles for x, a microbundle over *K*, with diagram $K \xrightarrow{i} E \xrightarrow{j} K$. By X_n there is no loss in generality in assuming $E(\xi_1)$ is contained in $E(\xi_2)$. Let $f_0: E(\xi_1) \to E(\xi_2)$ be the inclusion. Let $N(\sigma_{\alpha})$ be the closed star neighborhood of σ_{α} in the second barycentric subdivision. Let $K_{\alpha} = \bigcup_{\beta \leq \alpha} \sigma_{\beta}$, a subcomplex. Suppose for each $\beta < \alpha$ we have defined $f_{\beta}: E(\xi_1) \to E(\xi_2)$, an imbedding taking fibres into fibres, and f_{β} is the identity on i(K). Suppose further that $f_{\beta} | K_{\beta}$ is an isomorphism from $\xi_1 | K_{\beta}$ onto $\xi_2 | K_{\beta}$ and that, for each point p in $E(\xi_1) - j^{-1}(N(\sigma_{\beta}))$, there is a $\gamma < \beta$ and a neighborhood Nof p such that $f_{\beta} | N = f_{\beta'} | N$ for $\gamma \leq \beta' \leq \beta$. We construct f_{α} , satisfying these properties.

Let $g_{\alpha}: E(\xi_1) \to E(\xi_2)$ be $f_{\alpha-1}$ if $\alpha - 1$ exists. Otherwise $g_{\alpha} = \liminf_{\beta \to \alpha} f_{\beta}$, which exists because of the last induction property and since each point in Klies in only finitely-many $N(\sigma_{\beta})$'s. Then $g_{\alpha}(E(\xi_1))$ is the total space of a bundle η_{α} over K in a natural way, with the projection map j restricted. Since $N(\sigma_{\alpha})$ is contractible, $\eta_{\alpha} \mid N(\sigma_{\alpha})$ and $\xi_2 \mid N(\sigma_{\alpha})$ are both trivial. Let $c_{\alpha}: N(\sigma_{\alpha}) \times E^n \to E(\eta_{\alpha} \mid N(\sigma_{\alpha}))$ and $d_{\alpha}: N(\sigma_{\alpha}) \times E_n \to E(\xi_2 \mid N(\sigma_{\alpha}))$ be isomorphisms, so for example, $jc_{\alpha}(p,q) = p$ and $c_{\alpha}(p,0) = i(p)$. Let h^{p} in $\mathfrak{S}_{0}(n)$, for each p in $N(\sigma_{\alpha})$, be defined by $d_{\alpha}^{-1}c_{\alpha}(p,q) = (p,h^{p}(q))$. As before $p \to h^{p}$ is continuous. Let $t: K \to I$ be a map such that $t(K - N(\sigma_{\alpha})) = 0$ and $t(\sigma_{\alpha}) = 1$. If F is the function guaranteed in Theorem 1, let $h_{t}^{p} = F(h^{p}, t(p))$. Define $h: E(\eta_{\alpha}) \to E(\xi_{2})$ by

$$h(r) = d_{lpha}(j(r), h_t^{j(r)} \pi_2 c_{lpha}^{-1}(r)) \qquad \qquad \text{for } j(r) \text{ in } N(\sigma_{lpha}) ,$$

and h is the identity elsewhere. To see that h is continuous, suppose j(r) is in $N(\sigma_{\alpha}) \cap \operatorname{Cl} (K - N(\sigma_{\alpha}))$. Then t(j(r)) = 0 and $h_{\iota}^{j(r)} = h^{j(r)}$; hence

$$egin{aligned} h(r) &= d_{lpha}ig(j(r),\,h^{j\,(r)}\pi_2c_{lpha}^{-1}(r)ig) \ &= d_{lpha}ig(j(r),\,\pi_2d_{lpha}^{-1}c_{lpha}ig(j(r),\,\pi_2c_{lpha}^{-1}(r)ig) \ &= d_{lpha}ig(j(r),\,\pi_2d_{lpha}^{-1}(r)ig) \ &= r \;. \end{aligned}$$

Note that if t = 1, then h_t^p is onto, hence h takes the η_{α} -fibres over σ_{α} onto the ξ_2 -fibres over σ_{α} . Furthermore if the η_{α} -fibre over p coincides with the ξ_2 -fibre over p, then h^p is onto, as is h_t^p by property (3) of Theorem 1, hence the image under h of the η_{α} -fibre coincides with the ξ_2 -fibre. Finally, define $f_{\alpha} = hg_{\alpha}$. It is easy to see that f_{α} satisfies the induction properties.

The isomorphism from ξ_1 onto ξ_2 is defined to be $\lim_{\alpha \to \alpha_0} f_{\alpha}$. This finishes the proof of Theorem 2.

COROLLARY 1. If B is a neighborhood retract in E^n (for example, any separable metric topological manifold) then any microbundle over B admits a unique bundle.

PROOF. Let V be an open set in E^n containing B and $\rho: V \to B$, a retraction. Then if x is a microbundle over B, $\rho^*(\mathbf{x})$ may be regarded as an extension of x to all of V. But V can be triangulated, and Theorem 2 applied to give both the existence and uniqueness.

Denote by $\mathcal{H}_0^+(n)$ those elements in $\mathcal{H}_0(n)$ which preserve orientation.

COROLLARY 2. For large enough n, the canonical homomorphism $\pi_7(SO(n) \rightarrow \pi_7(\mathcal{H}_0^+(n)))$ is not an isomorphism.

PROOF. It is shown in [4] that the homomorphism $k_0S^s \to k_{top}S^s$ is not an isomorphism. It is well known that each vector *n*-bundle over S^s determines an element in $\pi_7(SO(n))$. By Theorem 2 each microbundle over S^s having fibre dimension *n* determines an element in $\pi_7(\mathcal{H}_0^+(n))$. Corollary 2 follows from the fact that only isomorphic bundles (vector bundles) determine the same element in $\pi_7(\mathcal{H}_0^+)(\pi_7(SO(n)))$, and trivial bundles determine the identity element (cf. [5, p. 97]).

On the other hand it is a consequence of [1] and [3] that, for $n \leq 3$, the homomorphisms $\pi_1(\mathrm{SO}(n)) \to \pi_i(\mathcal{H}_0^+(n))$, $i = 1, 2, 3, \cdots$ are isomorphisms, hence

any microbundle over a sphere having fibre dimension ≤ 3 can be represented by a vector bundle.

INSTITUTE FOR ADVANCED STUDY AND UNIVERSITY OF MICHIGAN

References

- J. CERF, Groupes d'automorphismes et groupes de diffeomorphismes, Bull. Soc. Math. France, 87 (1959), 319-329.
- 2. J. M. KISTER, Microbundles are fibre bundles, Bull. Amer. Math. Soc., 69 (1963), 854-857.
- 3. H. KNESER, Die deformationssätze der einfach zusammenhängenden Flächen, Math. Z., 25 (1926), 362-372.
- 4. J. MILNOR, Microbundles, Part I, Princeton University, 1963 (mimeographed).
- 5. N. STEENROD, The Topology of Fibre Bundles, Princeton University Press, 1951.

(Received August 27, 1963)