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 Microbundles are Fibre Bundles*

 By J. M. KISTER

 Let 9(n) be the space of all imbeddings of euclidean n-space En into itself

 provided with the compact-open topology. Let SC(n) be the subspace of all onto

 homeomorphisms. Those elements in WI(n) and SC(n) which preserve the origin

 0 will be denoted by p0(n) and XC0(n) respectively. Briefly, the main result
 (Theorem 2)1 of this paper is that every microbundle over a complex contains

 a fibre bundle (in the sense of [5], where fibre = En, group= oC0(n)), and the
 fibre bundle is unique. This implies that every such microbundle is mb-iso-

 morphic to a fibre bundle, and any two such fibre bundles are fb-isomorphic.

 The same result extends to microbundles over neighborhood retracts in El.

 In the special case of a topological manifold M and its tangent microbundle,

 a neighborhood U, is selected for each point x in M so that Ux is an open cell
 and varies continuously with x.

 The proof of Theorem 2 depends on extending homeomorphisms, and

 requires an examination of the non-closed subset XC0(n) in p0(n). We show

 that ,C0(n) is a weak kind of deformation retract of 0(Qn). More precisely:

 THEOREM 1. There is a map F: p0(n) x I-) >n(n), for each n, such that

 ( 1 ) F(g, a) = g for all g inw QnOr)
 ( 2 ) F(g, 1) is in XC0(n) for all g in 950(n).

 ( 3 ) F(h, t) is in XC0(n) for all h in XC0(n), t in I.

 For definitions and basic results about microboundles cf. [4]. In [2] an
 introduction and outline of this paper will be found.

 The author wishes to express his gratitude to D.R. McMillan for several

 helpful conversations.

 Definitions

 The disk of radius r with center at 0 in En is denoted by Dr and, if K is a

 compact set in En containing 0, we define the radius of K to be max{r IDr ci K}.
 Let d be the usual metric in El. If g1, g2: K-) En are imbeddings of the com-

 pact set K, then we say g1 and g2 are within s if for each x in Kit is true that

 d(g1(x), g2(x)) < e. If g is in p0(n) and K is a compact set in En, V(g, K, S) de-

 notes all elements h in t0(n) such that g I K and h I K are within E. The collec-

 tion of all such V(g, K, s) is, of course, a basis for p0(n).

 Two compact sets in En, K1 and K2, are s-homeomorphic if there is a

 * Supported by a grant from the Institute for Advanced Study and by NSF grant G-24156.
 B. Mazur has obtained this result also.

 190

This content downloaded from 
������������195.37.209.180 on Fri, 18 Sep 2020 11:57:20 UTC������������� 

All use subject to https://about.jstor.org/terms



 MICROBUNDLES ARE FIBRE BUNDLES 191

 homeomorphism h: K1 - K2 within s of the identity 1: K,- K1.
 If 0? a < b <d and a <c <d and t is in I, then we define Ot(a, b, c, d) to be

 the homeomorpism of En onto itself, fixed on Da and outside Dd as follows.

 Let L be a ray emanating from the origin and coordinatized by distance from

 the origin. Then Ot is fixed on [0, a] and on [d, co), and it takes b onto

 (1 - t)b + tc and is linear on [a, b] and [b, d]. We denote 01(a, b, c, d) by

 0(a, b, c, d), and 0(0, b, c, d) by 0(b, c, d). Clearly (t, a, b, c,d) - Ot(a, b, c, d) is

 continuous, regarded as a function from a subset of E5 into Co(Xn).

 When the dimension is unambigous X, ,CO etc. will be used for 9(n), JCO(n)
 etc.

 A useful lemma

 LEMMA. Let g and h be in p0(n) with h(En) c g(E4). Let a, b, c and d be real

 numbers satisfying 0 < a < b, 0 < c < d, and such that h(Db) c g(D,). Then

 there is an isotopy (pt(g, h; a, b, c, d) = 9t(t e I) of En onto itself satisfying

 (1) Do =1;
 (2 ) 91(h(Db)) D g(DA);

 (3 ) pt is fixed outside g(Dd) and on h(Da).

 Furthermore (g, h, a, b, c, d, t) - pt is a continuous function from the ap-
 propriate subset of go x go x E5 into XCO.

 PROOF. Let a' be the radius of g-lh(Da); note that a' < c. Let b' be the

 radius of g-lh(Db); note that a' <b' < c < d.

 We first shrink h(Da) inside g(Da,) with a homeomorphism a fixed outside

 h(Db). This can be done as follows. Let a" be the radius of h-lg(Da,); note
 that a" < a < b. Define

 h0(a, a", b)h-1 on h(Db)
 a =
 1 elsewhere.

 Next we get an isotopy *t(t C I) taking g(Db,) onto g(D6), leaving g(Da,),
 and the exterior of g(Dd) fixed. Define

 Jg0t(a', b', c, d)g-1 on g(Dd)
 elsewhere.

 Finally define qt = a1'*ts. It is easy to verify that (1), (2) and (3) are
 satisfied. The continuity of rt depends on the following three propositions.

 PROPOSITION 1. Let g be in go, and let r and s be two positive numbers.
 Then there is a a > 0 so that, if g1 is in V(g, Dre, 3), then

 ( 1 ) gl(Dr+e) D) g(Dr);

 ( 2 ) gg1 I g(Dr) and g-1 I g(Dr) are within s.
 PROOF. Let
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 192 J. M. KISTER

 (1 = min {d(g(x), g(y)) x C DrY y X int Dr+.}

 and

 62= min {d(g(x), g(y)) I x, y C Dr, d(x, y) > e}

 Let

 ( = min {&, 62}1

 Suppose g1 is in V(g, Dr+e, (). Then condition (1) is satisfied, for otherwise

 there is a z in Bd g,(D7+,) n g(Dr). Let x = g-'(z) C Dr, and y = g-'(z) C Bd Dr+e.

 Then 63 ? d(g(x), g(y)) = d(g,(y), g(y)), contradicting the choice of g1.
 To see that condition (2) is satisfied, suppose not. Then there is a z in

 g(Dr) such that, if x = g-'(z) and y = g-'(z), then d(x, y) > s and x and y are
 in Dr+,. It follows that 62 _ d(g(x), g(y)) = d(g1(y), g(y)), contradicting the
 choice of g1.

 PROPOSITION 2. Let C be a compact set, h: C - En an imbedding, D a

 compact set in En containing h(C) in its interior, and g: D - En another

 imbedding. For any e> 0, there is a ( so that, if g,: D En, h,: C ) En
 are imbeddings within ( of g and h respectively, then glh, is defined and
 withins of gh.

 PROOF. Since D contains h(C) on its interior and h(C) is compact, there

 is a 63 > 0 such that the (1-nbd of h(C) is contained in D. Let 62 be so small

 that x, y c D and d(x, y) < (2 imply d(g(x), g(y)) <e/2. Choose ( = min ((3, (2, e/2).

 Then if g,: D - En and h,: C - En are imbeddings within ( of g and h re-
 spectively, g1h, is defined, since ( ? 6,. Let z c C and x = h(z), y = h,(z). It
 follows that d(x, y) < ( _< (2, hence d(g(x), g(y)) < e/2. Also d(g(y), g,(y)) < ( <?
 e/2, hence d(gh(z), g1h1(z)) = d(g(x), g1(y)) <e.

 Remark. Proposition 2 shows that the semi-group 9 (or 90) whose multi-
 plication consists of composition, is a topological semi-group, i.e., multiplica-

 tion is continuous.

 PROPOSITION 3. Let g and h be in go, and let a be a non-negative number
 such that h(Da) c g(En). Let r = radius g-lh(Da). Then r = r(g, h, a) is con-

 tinuous simultaneously in the variables g, h and a.

 PROOF. Case 1. a > 0. Let Ta1 En )En be defined by Ta1(x) = (a1/a)x,

 for positive a1. Clearly Ta1 varies continuously with a1, hence Proposition 2

 shows that, given any nbd N of h, there is a nbd M of h and a nbd P of a such

 that (h1, a1) in M x P implies that h, Tal is in the nbd Nof hl = h. Using Prop-
 ositions 1 and 2, we can conclude that, for any e, there is a nbd L1 of g, M1

 of h, and P1 of a such that (g1, h1, a1) in L1 x M1 x P1 implies g'hT ITa1 Da is

This content downloaded from 
������������195.37.209.180 on Fri, 18 Sep 2020 11:57:20 UTC������������� 

All use subject to https://about.jstor.org/terms



 MICROBUNDLES ARE FIBRE BUNDLES 193

 defined and is within s of g-'h I Da. This means g-'h(Da) and g-h1(Da1) are s-

 homeomorphic, and it can easily be seen that I r(g, h, a) - r(g1, h1, a1) I < s.

 Case 2. a=O. Then r(g, h, a) = 0 and, for any s, there is a a such that

 diameter g-lh(Ds) < s. As in Case 1, using Propositions 1 and 2, we can con-

 clude that gp1h1 I Ds varies continuously with g1 and h1; hence by restricting g,
 and h1 to lie near g and h respectively, and for a1 C [0, (], we have r(g1, h1,a1) < 2s.

 This finishes the proof of Proposition 3.

 Going back to the proof of the Lemma we first show a = a(g, h, a, b) is

 continuous. By applying Proposition 3 twice we see that a" depends continu-

 ously on g, h, and a, hence 0(a, a", b) depends continuously on g, h, a and b.

 Note that a would be the same function if it were defined as hO(a, a", b)h-' on

 the set h(Db, 2) and 1 elsewhere. Since h(Dbl) c int h(Db62), there is a neighbor-

 hood N of h such that h1 in N implies hl(Dbl) c h(Db?2), hence if h1 is in N, b,
 is in the interval (0, b + 1), and g1 and a, satisfy the hypotheses of the Lemma,

 then a1 = a(g1, h1, a1, b1) can be defined as h10(al, a", b1)h-1 on h(Db+2) and 1
 everywhere else, where a" = a" (a1).

 We may assume, using Proposition 1, that N has been chosen so that

 hl(Db+3) D h(Db+2) for hl in AT, hence hT1 I h(Db+2) is defined. Proposition 1 also

 shows that h I1 h(Db+2) varies continuously with h1. Using Proposition 2,
 we conclude that O(ai, a", b1)hp1 I h(Db+2) varies continuously with g1, h1, a,
 and bl. Finally applying Proposition 2 again we see that a, I h(Db+2)
 h10(al, a", bl)hp1 I h(Db?2) varies continuously with g1, hl, a, and bl, and hence
 a(g, h, a, b) is continuous.

 The proof that At =Ir(g, h, a, b, C, d, t) is continuous is virtually the same

 as that for a. From Propositions 1 and 2, it is easy to see that SC is a topo-

 logical group, hence the product 9t is continuous in a and At, and therefore

 At depends continuously on g, h, a, b, c, d and t. q.e.d.

 Proof of Theorem 1

 Before we give the proof of Theorem 1 we state and prove two more prop-

 ositions.

 PROPOSITION 4. Let g be in cB0, and ri be the radius of g(D) for each posi-
 tive integer i. Then there is an element h in cJO such that h(D) = Dri, for
 each i, and h depends continuously on g.

 PROOF. Let L be any ray emanating from the origin in En. Coordinatize

 L by the distance from 0. We shall define h on L so that

 h(L) = Ln (Ue o , Dry M

 The segment [O. 1] on L is mapped linearly onto [O. r1j. More generally, [i, i + 1]
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 194 J. M. KISTER

 is mapped linearly by h onto [ri, ri,?], i 1, 2, *-.. It is easily seen that h is
 in 9,

 To see that h is continuous as a function of g, we merely have to note

 that h depends only on the ri, and that each ri depends continuously on g ac-
 cording to Proposition 3.

 PROPOSITION 5. Let F: go x [0, 1) go be continuous, and denote F(g, t)

 by gt Suppose gt I Dn = 91-(1/2)- | D. for all t in [1 - (1/2)", 1), and n = 1, 2,
 Then F can be extended to 9, x L

 PROOF. Define F(g, 1) to be lime, A g, = gj. Clearly g, is well-defined, con-
 tinuous, and 1-1, and by invariance of domain, g1 is open, hence g1 is in 90.

 We verify continuity of F at (g, 1). Let K be any compact set in En,

 s > 0, and let V(g1, K, s) be the neighborhood they determine in 9. Let n be

 large enough that K is contained in Do. Then gl(1/2)n is in V(gl, K, s), so by

 continuity of F at (g, 1 - (1/2)f), there is a neighborhood N of g such that

 F(Nx 1 ( )f )V (gly K ) .

 It follows that

 F(Nx [1 - ( i])c V(g1, K, s)

 since g' ID,,= g'_(1/2)n | D, for g' in N, t in [1 - (1/2)", 1].
 We return to the proof of Theorem 1. Let g in to be given. Use Proposi-

 tion 4 to find h = h(g). First we shall produce an isotopy at(t e I): En > g(En)

 such that

 (a) a0= h;
 (b) aj(E7) = g(E");
 ( c ) at = a(g, t) is continuous in g and t.

 We do this in an infinite number of steps. To define at(t C [0, 1/2]) we use

 the Lemma for a = O b = c = 1, d = 2, and obtain )(t e I). Define at =

 P2th(t e [0, 1/2]). Then a, = h, a1/2(D,) Dg(D1) and, by Proposition 4, the Lemma,
 and the remark after Proposition 2, at(t C [0, 1/2]) is continuous in g and t.

 Note that a,12(D2) C g(D2) by property (3) of the Lemma.
 Next we define, at(t E [1/2, 3/4]) by again using the Lemma, this time for

 "h = a1/2, a = 1, b = c = 2, d = 3, and we obtain 9t(t C I). Now define at =

 (P4t-2a{l2(t e [1/2, 314]). Then at is an extension of that obtained in the first
 step, ao3/4(D2) D g(D2), and since a1/2 depends continuously on g, we can conclude

 as before that at(t C [1/2, 3/4]) is continuous in g and t. Note that al34(D3) c
 g(D3), and that at I D, = a1/2 I D1 for t in [1/2, 3/4], by property (3) of the Lemma.

 We continue in this manner defining for each integer n, at(t a [1 - (1/2) ,
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 MICROBUNDLES ARE FIBRE BUNDLES 195

 1 -(1/2)n+1]) such that a1-(1/2)f(Dfl) D g(D.) and attIDn = a1-(1/2)fl Dn for t in

 [1 - (1/2)ff,1 - (1/2)f+1].
 Proposition 5 allows us to define a1 so that at(t C I) depends continuously

 on g and t, and al(E") = g(En).

 In the second stage, we produce an isotopy St(t e I): En En such that

 (a) 90 =h,

 (b) A3 ==1,
 ( c ) /3t = /3(g, t) is continuous in g and t.

 This we do again in an infinite number of steps, first obtaining at(t E [0, 1/2])

 as follows. We have h(Dj) = D,1 where r1 = radius of g(D1), since h was con-
 structed so as to take round disks onto round disks. We shall preserve this

 property throughout the isotopy St(t C I). Let L be any ray emanating from

 the origin in En and coordinatized by distance from the origin. For t in I, let

 cpt take the interval [0, r1] in L linearly onto [0, (1 - t)r, + t] and translate
 [r1, on) to [(1 - t)r, + t, co). This defines (pt in YCO for each t in I. Now let

 ,at = 'P2th(t e [O 1/2]). Then 80 = h and 831/21 D, = 1, and since r1 and h depend
 continuously on g, then 9 2t and hence /3t are continuous in g and t.

 Let 82 be such that 81/2(D2) = D2, and define St(t e [1/2, 3/4]) as follows.

 Let L be any ray as before, and let 9t(t e I) take [1, 82] in L linearly onto

 [1, (1 - t)S2 + 2t], translate [S2, c?) onto [(1 - t)S2 + 2t, co), and leave [0, 1]

 fixed. Define 3 = 94t-2I1/2(t e [1/2, 3/4]). Then this extends St(t e [0, t]),

 /33/41 D2 = 1, and St depends continuously on g and t.
 Continuing in this manner, as in the first stage, we obtain an isotopy

 ,8t(t e I) which depends continuously on g and t.
 Now define

 F(g, t) {la,-2t~a-Ig for t in [0, 1/2]
 /32j8a-1g for t in [1/2, 1] .

 It is easy to check that F satisfies (1) and (2). An immediate consequence of

 Proposition 4 is that h is onto if g is. Each (pt that occurs in a step of the

 construction of at and /3t is onto, hence at and /3t, and finally F(g, t) is onto if

 g is, so property (3) holds. Continuity of F follows from that of at and /3 and
 from Propositions 1 and 2.

 Admissible bundles

 A microbundle x: B -) E j B, having fibre dimension n, admits a bundle
 providing there is an open set E1 in E containing the O-section i(B) such that

 j I E1 E, - B is a fibre bundle with fibre En and structural group Co. The fibre
 bundle in this case will be called an admissible bundle for x.
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 196 J. M. KISTER

 Let Xn be the statement that every microbundle over a locally-finite n-

 dimensional complex admits a bundle. Let Un be the statement that any two
 admissible bundles for the same microbundle over a locally-finite n-dimension-

 al complex are isomorphic. An isomorphism in this case is a homeomorphism

 between the total spaces which preserves fibres and is the identity on the

 0-section.

 THEOREM 2. Xn and Un are true for all n.
 PROOF. The proof will be by induction on n. X0 and Uo follow immediately

 from the fact that microbundles over a 0-dimensional set are all trivial.

 Next we show Xn_1 and Un-, imply Xn. Let x be a microbundle over a

 locally-finite n-complex K with diagram: K e E -A K. For each n-simplex a

 in K, we find an admissible (and trivial) bundle I, for x I a. Thus we have a

 homeomorphism ha: a x El , E(o), where E(0o) is the total space of #,, such

 that jh,(p, q) = p and h,(p, 0) i(p), for all p in a and q in En. Let D be an
 open set in E containing i(K) such that j-1(a) n D is contained in E(#,). Let

 K*-1 denote the (n - 1)-skeleton of K, and y the microbundle: K7- - i)

 i-1(K--1) n D A KA-1, where i' and j' are the restrictions of i and i. By Xn_1,
 y admits a bundle I. Let a be any n-simplex in K. By the choice of D, for

 each point p in Oa, the u-fibre over p is contained in the #,-fibre over p. Then

 I Oa and i, I Oa are both admissible bundles for x I Oa, and since the second is
 trivial, by Un-, it follows that 1 I Oa is trivial also. Hence, we have a homeo-
 morphism h : Oa x En > E(Q I Oa) such that jh,(p, q) -p and h,(p, 0) = i(p),
 for all p in Oa and q in En.

 For each p in Oa, define gP: El , En by h-1hn(p, q) (p, gP(y)). Of course,
 gP is just the imbedding of the u-fibre over p in the h,-fibre over p relative to

 the coordinates given by hw and h,, hence gP is in P30(n). It is easy to check
 that p gP is continuous. Let a1 be a smaller concentric n-simplex contained

 in a. Identify points in a - int a1 with Oa x I, with p in Oa identified with (p, 0).

 Let F be the map guaranteed by Theorem 1 and, for each point (p, t) in

 a-int a1, denote F(gP, t) by gP. Finally let E1 = E@r) U {h,((p, t), gtP(q)) I (p, t)
 in a - int a1, q in En} U E(e, a1,). We claim that j I E1: E1 Kn-1 U a is an
 admissible bundle for x I Kn-1 U a.

 We verify local triviality over a. Let f: (a - int a1) x El ' E1 be given

 by f ((p, t), q) = h((p, t), gP(q)). Define eP in ,C0(n) for each (p, 1) in Oa1 by

 eP(q) = wU2f -h,((p, 1), q), where U2: a x En - En is projection onto the second
 factor. Now define e: a x En j-f(a) n E1, an onto homeomorphism, by:

 e a a1 x En a hr1 x En
 and
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 MICROBUNDLES ARE FIBRE BUNDLES 197

 e((p, t), q) =f ((py t), eP(q))

 for (p, t) in a - int a1.

 To verify that e is well-defined, we let (p, 1) be any point in &a1. Then

 f -1h(p, 1), q) =((p, 1), eP(q)), by definition of eP, hence h,(p,1),q)=f((p, 1), eP(q)).
 This proves local triviality over int a.

 To verify local triviality on Oa, let (p, 0) be any point in 8a. Let N1 be a

 neighborhood of (p, 0) in Kn-' such that C I N1 is trivial. Then we have a

 homeomorphism h,: N1 x En ) j-'(Nl) n E(7)) such that jhl(q, r) = q and
 h1(q, 0) = i(q). Define eq in C0(n) by eq(r) = wc2f -1h,(q, r). Let N2 = {(q, t) I t < 1,
 q in N1 nf a} and N= N1 U N2. Then N is a neighborhood of (p, 0) in K-1 U a.

 Define e: N x En j-f(N) n E1 by:

 e N1 x En = -,

 and

 e((q, t), r) = f ((q, t), eq(r))

 for (q, t) in N2.

 As before, e is seen to be a well-defined onto homeomorphism, and this

 completes our demonstration of the local triviality of i I E1: E1 - Kn-1 U a.
 Thus we have extended ay to an admissible bundle over Kn-1 U a and, by re-

 peating this process on each n-simplex a, we get an admissible bundle for x.

 Finally we show Xn implies Un, and the proof for Theorem 2 will be fin-
 ished. Let a1, a2, *. (aI awl ... (a < ao) be a well-ordering of those simplexes in
 the n-complex K which are not faces of some higher dimensional simplex in K.

 Let 0, and t2 be two admissible bundles for x, a microbundle over K, with
 diagram KiL E j K. By Xn there is no loss in generality in assuming E(01)
 is contained in E(22). Let fo: E(t1) - E(t2) be the inclusion. Let N(au,) be the
 closed star neighborhood of as in the second barycentric subdivision. Let K,, =

 U<,wa,, a subcomplex. Suppose for each f8 < a we have defined f,: E(t1)
 E(02), an imbedding taking fibres into fibres, and fi is the identity on i(K).

 Suppose further that fib I Kp is an isomorphism from 0, I K, onto 2 1 Kay and that,
 for each point p in E(01) - j-(N(a,)), there is a V < f8 and a neighborhood N
 of p such that fi I N I N for y < fi' ? fi. We construct fos satisfying these

 properties.

 Let go: E(e1) E(02) be foul if a - 1 exists. Otherwise go limitsfw,
 which exists because of the last induction property and since each point in K

 lies in only finitely-many N(au)'s. Then gw,(E(01)) is the total space of a bundle
 Y over K in a natural way, with the projection map j restricted. Since N(aw)

 is contractible, Yas I N(auw) and ~2 1 N(aw) are both trivial. Let ca: N(aw) x En .
 E(rY~ I N(aw,)) and do: N(aw,) x En - E(:2 I N(aw,)) be isomorphisms, so for example,
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 198 J. M. KISTER

 jc,(p, q) = p and c,(p, 0) = i(p). Let hV in 9,(n), for each p in N(acr,), be defined
 by d'c,(p, q) = (p, hP(q)). As before p Vh is continuous. Let t: K - I be a

 map such that t(K - N(u,,)) = 0 and t(a,,) = 1. If F is the function guaranteed
 in Theorem 1, let h = F(h", t(p)). Define h: E(ry,) - E(e2) by

 h(r) = da,(j(r), hti'tr2c;'(r)) for j(r) in N(aa,)

 and h is the identity elsewhere. To see that h is continuous, suppose j(r) is in

 N(au) n Cl (K - N(a,)). Then t(j(r)) = 0 and hj'r) = h6'r); hence

 h(r) = d,,(j(r), hi'r'w2c;'(r))
 = d,(j(r), r2d;'c4 j(r), w2c;'(r)))

 = d,(j(r), w2d;'(r))

 r.

 Note that if t = 1, then ht" is onto, hence h takes the Y-fibres over u. onto the

 {2-fibres over r.. Furthermore if the Y-fibre over p coincides with the 42yfibre
 over p, then hV is onto, as is hV by property (3) of Theorem 1, hence the image

 under h of the p,0-fibre coincides with the 42yfibre. Finally, define f, = hg,. It

 is easy to see that fo satisfies the induction properties.

 The isomorphism from #j onto t2 is defined to be limit ,o ff,. This finishes
 the proof of Theorem 2.

 COROLLARY 1. If B is a neighborhood retract in El (for example, any

 separable metric topological manifold) then any microbundle over B admits

 a unique bundle.

 PROOF. Let V be an open set in En containing B and p: V-) B, a retrac-

 tion. Then if x is a microbundle over B, p*(x) may be regarded as an exten-

 sion of x to all of V. But V can be triangulated, and Theorem 2 applied to give

 both the existence and uniqueness.

 Denote by X7C+(n) those elements in JC0(n) which preserve orientation.

 COROLLARY 2. For large enough n, the canonical homomorphism

 ir7(SO(n) +7(JC+(n)) is not an isomorphism.

 PROOF. It is shown in [4] that the homomorphism kOS8 kt,0S8 is not an
 isomorphism. It is well known that each vector n-bundle over S8 determines

 an element in r7(SO(n)). By Theorem 2 each microbundle over S8 having fibre

 dimension n determines an element in r7(XfCO(n)). Corollary 2 follows from the

 fact that only isomorphic bundles (vector bundles) determine the same element

 in r7(XC0+)(w7(SO(n))), and trivial bundles determine the identity element (cf.

 [5, p. 97]).
 On the other hand it is a consequence of [1] and [3] that, for n < 3, the

 homomorphisms 7r1(SO(n)) -r w(XJC+(n)), i = 1, 2, 3, * are isomorphisms, hence

This content downloaded from 
������������195.37.209.180 on Fri, 18 Sep 2020 11:57:20 UTC������������� 

All use subject to https://about.jstor.org/terms



 MICROBUNDLES ARE FIBRE BUNDLES 199

 any microbundle over a sphere having fibre dimension < 3 can be represented

 by a vector bundle.

 INSTITUTE FOR ADVANCED STUDY AND

 UNIVERSITY OF MICHIGAN
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